| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumval3.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumval3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
gsumval3.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
gsumval3.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
gsumval3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumval3.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumval3.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumval3a.t |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 10 |
|
gsumval3a.n |
⊢ ( 𝜑 → 𝑊 ≠ ∅ ) |
| 11 |
|
gsumval3a.s |
⊢ ( 𝜑 → 𝑊 ⊆ 𝐴 ) |
| 12 |
10
|
neneqd |
⊢ ( 𝜑 → ¬ 𝑊 = ∅ ) |
| 13 |
|
fz1f1o |
⊢ ( 𝑊 ∈ Fin → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 14 |
9 13
|
syl |
⊢ ( 𝜑 → ( 𝑊 = ∅ ∨ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 15 |
14
|
ord |
⊢ ( 𝜑 → ( ¬ 𝑊 = ∅ → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ) |
| 16 |
12 15
|
mpd |
⊢ ( 𝜑 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 17 |
16
|
simprd |
⊢ ( 𝜑 → ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 18 |
|
excom |
⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 19 |
|
exancom |
⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑥 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 20 |
|
fvex |
⊢ ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∈ V |
| 21 |
|
biidd |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 22 |
20 21
|
ceqsexv |
⊢ ( ∃ 𝑥 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 23 |
19 22
|
bitri |
⊢ ( ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 24 |
23
|
exbii |
⊢ ( ∃ 𝑓 ∃ 𝑥 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 25 |
18 24
|
bitri |
⊢ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 26 |
17 25
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 27 |
|
exdistrv |
⊢ ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 28 |
|
an4 |
⊢ ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ∧ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 29 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐺 ∈ Mnd ) |
| 30 |
1 3
|
mndcl |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 31 |
30
|
3expb |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 32 |
29 31
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
| 33 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 34 |
33
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ran 𝐹 ) → 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 35 |
34
|
adantrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 36 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → 𝑦 ∈ ran 𝐹 ) |
| 37 |
3 4
|
cntzi |
⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ ran 𝐹 ) ∧ 𝑦 ∈ ran 𝐹 ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 38 |
35 36 37
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) |
| 39 |
1 3
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 40 |
29 39
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
| 41 |
16
|
simpld |
⊢ ( 𝜑 → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 43 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 44 |
42 43
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 45 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 46 |
45
|
frnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 47 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 48 |
|
f1ocnv |
⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 50 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 51 |
|
f1oco |
⊢ ( ( ◡ 𝑔 : 𝑊 –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 52 |
49 50 51
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 53 |
|
f1of |
⊢ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 54 |
47 53
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 55 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 56 |
54 55
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ) |
| 57 |
45
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝐹 Fn 𝐴 ) |
| 58 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑊 ⊆ 𝐴 ) |
| 59 |
54 58
|
fssd |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ) |
| 60 |
59
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) |
| 61 |
|
fnfvelrn |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑔 ‘ 𝑥 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ ran 𝐹 ) |
| 62 |
57 60 61
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑔 ‘ 𝑥 ) ) ∈ ran 𝐹 ) |
| 63 |
56 62
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑥 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ 𝑥 ) ∈ ran 𝐹 ) |
| 64 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 65 |
50 64
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 66 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) = ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 67 |
65 66
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) = ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 68 |
67
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) ) |
| 69 |
65
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑊 ) |
| 70 |
|
f1ocnvfv2 |
⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ ( 𝑓 ‘ 𝑘 ) ∈ 𝑊 ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑘 ) ) |
| 71 |
47 69 70
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑔 ‘ ( ◡ 𝑔 ‘ ( 𝑓 ‘ 𝑘 ) ) ) = ( 𝑓 ‘ 𝑘 ) ) |
| 72 |
68 71
|
eqtr2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) |
| 74 |
|
fvco3 |
⊢ ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 75 |
65 74
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 76 |
|
f1of |
⊢ ( ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 77 |
52 76
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ◡ 𝑔 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 78 |
77
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 79 |
|
fvco3 |
⊢ ( ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝐴 ∧ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) |
| 80 |
59 78 79
|
syl2an2r |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑔 ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) ) |
| 81 |
73 75 80
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) ∧ 𝑘 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( ( 𝐹 ∘ 𝑔 ) ‘ ( ( ◡ 𝑔 ∘ 𝑓 ) ‘ 𝑘 ) ) ) |
| 82 |
32 38 40 44 46 52 63 81
|
seqf1o |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 83 |
|
eqeq12 |
⊢ ( ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑥 = 𝑦 ↔ ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 84 |
82 83
|
syl5ibrcom |
⊢ ( ( 𝜑 ∧ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) → ( ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) → 𝑥 = 𝑦 ) ) |
| 85 |
84
|
expimpd |
⊢ ( 𝜑 → ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ∧ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 86 |
28 85
|
biimtrrid |
⊢ ( 𝜑 → ( ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 87 |
86
|
exlimdvv |
⊢ ( 𝜑 → ( ∃ 𝑓 ∃ 𝑔 ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 88 |
27 87
|
biimtrrid |
⊢ ( 𝜑 → ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 89 |
88
|
alrimivv |
⊢ ( 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ↔ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 91 |
90
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 92 |
91
|
exbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 93 |
|
f1oeq1 |
⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ↔ 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) ) |
| 94 |
|
coeq2 |
⊢ ( 𝑓 = 𝑔 → ( 𝐹 ∘ 𝑓 ) = ( 𝐹 ∘ 𝑔 ) ) |
| 95 |
94
|
seqeq3d |
⊢ ( 𝑓 = 𝑔 → seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) = seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ) |
| 96 |
95
|
fveq1d |
⊢ ( 𝑓 = 𝑔 → ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |
| 97 |
96
|
eqeq2d |
⊢ ( 𝑓 = 𝑔 → ( 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ↔ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 98 |
93 97
|
anbi12d |
⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 99 |
98
|
cbvexvw |
⊢ ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 100 |
92 99
|
bitrdi |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 101 |
100
|
eu4 |
⊢ ( ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ↔ ( ∃ 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∀ 𝑥 ∀ 𝑦 ( ( ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ∧ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑦 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) → 𝑥 = 𝑦 ) ) ) |
| 102 |
26 89 101
|
sylanbrc |
⊢ ( 𝜑 → ∃! 𝑥 ∃ 𝑓 ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑓 ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |