| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumval3.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumval3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
gsumval3.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
gsumval3.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
gsumval3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumval3.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumval3.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumval3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 10 |
|
gsumval3.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 11 |
|
gsumval3.n |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) |
| 12 |
|
gsumval3.w |
⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) |
| 13 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 14 |
|
suppssdm |
⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 15 |
12 14
|
eqsstri |
⊢ 𝑊 ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 16 |
|
f1f |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 17 |
10 16
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 18 |
|
fco |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 19 |
7 17 18
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 20 |
15 19
|
fssdm |
⊢ ( 𝜑 → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 22 |
|
f1ores |
⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 23 |
13 21 22
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 24 |
12
|
imaeq2i |
⊢ ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 25 |
7 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 26 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 27 |
|
fex |
⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐻 ∈ V ) |
| 28 |
16 26 27
|
sylancl |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 ∈ V ) |
| 29 |
10 28
|
syl |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 30 |
|
f1fun |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → Fun 𝐻 ) |
| 31 |
10 30
|
syl |
⊢ ( 𝜑 → Fun 𝐻 ) |
| 32 |
31 11
|
jca |
⊢ ( 𝜑 → ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) |
| 33 |
25 29 32
|
jca31 |
⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 34 |
33
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 35 |
|
imacosupp |
⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) ) |
| 36 |
35
|
imp |
⊢ ( ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 37 |
34 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 38 |
24 37
|
eqtrid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 39 |
38
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 40 |
23 39
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 41 |
|
isof1o |
⊢ ( 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 42 |
41
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) |
| 43 |
|
f1oco |
⊢ ( ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 ) → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 44 |
40 42 43
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 45 |
|
f1of |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ 𝑊 → 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 ) |
| 46 |
|
frn |
⊢ ( 𝑓 : ( 1 ... ( ♯ ‘ 𝑊 ) ) ⟶ 𝑊 → ran 𝑓 ⊆ 𝑊 ) |
| 47 |
42 45 46
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝑓 ⊆ 𝑊 ) |
| 48 |
|
cores |
⊢ ( ran 𝑓 ⊆ 𝑊 → ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐻 ∘ 𝑓 ) ) |
| 49 |
|
f1oeq1 |
⊢ ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) = ( 𝐻 ∘ 𝑓 ) → ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 50 |
47 48 49
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( ( 𝐻 ↾ 𝑊 ) ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 51 |
44 50
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 52 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
| 53 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin ) |
| 54 |
52 20 53
|
sylancr |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ∈ Fin ) |
| 56 |
12
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 57 |
56
|
imaeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) ) |
| 58 |
52
|
a1i |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 59 |
17 58
|
fexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 60 |
25 59 32
|
jca31 |
⊢ ( 𝜑 → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 61 |
60
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ∧ ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) ) |
| 62 |
61 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 63 |
57 62
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 64 |
63
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 65 |
23 64
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 66 |
55 65
|
hasheqf1od |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 supp 0 ) ) ) |
| 67 |
66
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 68 |
67
|
f1oeq2d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ 𝑊 ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 69 |
51 68
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |