| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsumval3.0 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsumval3.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 4 |
|
gsumval3.z |
⊢ 𝑍 = ( Cntz ‘ 𝐺 ) |
| 5 |
|
gsumval3.g |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 6 |
|
gsumval3.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 7 |
|
gsumval3.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 8 |
|
gsumval3.c |
⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 9 |
|
gsumval3.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 10 |
|
gsumval3.h |
⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 11 |
|
gsumval3.n |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) |
| 12 |
|
gsumval3.w |
⊢ 𝑊 = ( ( 𝐹 ∘ 𝐻 ) supp 0 ) |
| 13 |
|
f1f |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 14 |
10 13
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ) |
| 15 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin ) |
| 16 |
14 15
|
fexd |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 17 |
|
vex |
⊢ 𝑓 ∈ V |
| 18 |
|
coexg |
⊢ ( ( 𝐻 ∈ V ∧ 𝑓 ∈ V ) → ( 𝐻 ∘ 𝑓 ) ∈ V ) |
| 19 |
16 17 18
|
sylancl |
⊢ ( 𝜑 → ( 𝐻 ∘ 𝑓 ) ∈ V ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) ∈ V ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem1 |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 22 |
|
fzfi |
⊢ ( 1 ... 𝑀 ) ∈ Fin |
| 23 |
|
suppssdm |
⊢ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 24 |
12 23
|
eqsstri |
⊢ 𝑊 ⊆ dom ( 𝐹 ∘ 𝐻 ) |
| 25 |
7 14
|
fcod |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 ) |
| 26 |
24 25
|
fssdm |
⊢ ( 𝜑 → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 27 |
|
ssfi |
⊢ ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin ) |
| 28 |
22 26 27
|
sylancr |
⊢ ( 𝜑 → 𝑊 ∈ Fin ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ∈ Fin ) |
| 30 |
10
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ) |
| 31 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) ) |
| 32 |
|
f1ores |
⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 33 |
30 31 32
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ) |
| 34 |
12
|
imaeq2i |
⊢ ( 𝐻 “ 𝑊 ) = ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) |
| 35 |
7 6
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 36 |
|
ovex |
⊢ ( 1 ... 𝑀 ) ∈ V |
| 37 |
|
fex |
⊢ ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐻 ∈ V ) |
| 38 |
14 36 37
|
sylancl |
⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 39 |
35 38
|
jca |
⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) ) |
| 40 |
|
f1fun |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → Fun 𝐻 ) |
| 41 |
10 40
|
syl |
⊢ ( 𝜑 → Fun 𝐻 ) |
| 42 |
41 11
|
jca |
⊢ ( 𝜑 → ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) ) |
| 43 |
|
imacosupp |
⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) ) |
| 44 |
39 42 43
|
sylc |
⊢ ( 𝜑 → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 45 |
44
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐻 “ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) |
| 46 |
34 45
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 47 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 “ 𝑊 ) = ( 𝐹 supp 0 ) ) |
| 48 |
47
|
f1oeq3d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐻 “ 𝑊 ) ↔ ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 49 |
33 48
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻 ↾ 𝑊 ) : 𝑊 –1-1-onto→ ( 𝐹 supp 0 ) ) |
| 50 |
29 49
|
hasheqf1od |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 supp 0 ) ) ) |
| 51 |
50
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 52 |
21 51
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 53 |
|
f1oeq1 |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) ) |
| 54 |
|
coeq2 |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( 𝐹 ∘ 𝑔 ) = ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) |
| 55 |
54
|
seqeq3d |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) = seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ) |
| 56 |
55
|
fveq1d |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) |
| 57 |
56
|
eqeq2d |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 58 |
53 57
|
anbi12d |
⊢ ( 𝑔 = ( 𝐻 ∘ 𝑓 ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ( 𝐻 ∘ 𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 59 |
20 52 58
|
spcedv |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 60 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐺 ∈ Mnd ) |
| 61 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 62 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 63 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| 64 |
|
f1f1orn |
⊢ ( 𝐻 : ( 1 ... 𝑀 ) –1-1→ 𝐴 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 65 |
10 64
|
syl |
⊢ ( 𝜑 → 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) |
| 66 |
|
f1oen3g |
⊢ ( ( 𝐻 ∈ V ∧ 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) |
| 67 |
16 65 66
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... 𝑀 ) ≈ ran 𝐻 ) |
| 68 |
|
enfi |
⊢ ( ( 1 ... 𝑀 ) ≈ ran 𝐻 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) |
| 69 |
67 68
|
syl |
⊢ ( 𝜑 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) ) |
| 70 |
22 69
|
mpbii |
⊢ ( 𝜑 → ran 𝐻 ∈ Fin ) |
| 71 |
70 11
|
ssfid |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 73 |
12
|
neeq1i |
⊢ ( 𝑊 ≠ ∅ ↔ ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ ) |
| 74 |
|
supp0cosupp0 |
⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝐹 supp 0 ) = ∅ → ( ( 𝐹 ∘ 𝐻 ) supp 0 ) = ∅ ) ) |
| 75 |
74
|
necon3d |
⊢ ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 76 |
35 38 75
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝐹 ∘ 𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 77 |
73 76
|
biimtrid |
⊢ ( 𝜑 → ( 𝑊 ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) ) |
| 78 |
77
|
imp |
⊢ ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) → ( 𝐹 supp 0 ) ≠ ∅ ) |
| 79 |
78
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ≠ ∅ ) |
| 80 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) |
| 81 |
14
|
frnd |
⊢ ( 𝜑 → ran 𝐻 ⊆ 𝐴 ) |
| 82 |
81
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐻 ⊆ 𝐴 ) |
| 83 |
80 82
|
sstrd |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 84 |
1 2 3 4 60 61 62 63 72 79 83
|
gsumval3eu |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 85 |
|
iota1 |
⊢ ( ∃! 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) |
| 86 |
84 85
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) |
| 87 |
|
eqid |
⊢ ( 𝐹 supp 0 ) = ( 𝐹 supp 0 ) |
| 88 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ¬ 𝐴 ∈ ran ... ) |
| 89 |
1 2 3 4 60 61 62 63 72 79 87 88
|
gsumval3a |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 90 |
89
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( ℩ 𝑥 ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) ) |
| 91 |
86 90
|
bitr4d |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ) |
| 92 |
91
|
alrimiv |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ) |
| 93 |
|
fvex |
⊢ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∈ V |
| 94 |
|
eqeq1 |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) |
| 95 |
94
|
anbi2d |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 96 |
95
|
exbidv |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) ) |
| 97 |
|
eqeq2 |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 98 |
96 97
|
bibi12d |
⊢ ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ↔ ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 99 |
93 98
|
spcv |
⊢ ( ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 100 |
92 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ 𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) |
| 101 |
59 100
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻 ∘ 𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) |