Metamath Proof Explorer


Theorem gsumval3lem2

Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b 𝐵 = ( Base ‘ 𝐺 )
gsumval3.0 0 = ( 0g𝐺 )
gsumval3.p + = ( +g𝐺 )
gsumval3.z 𝑍 = ( Cntz ‘ 𝐺 )
gsumval3.g ( 𝜑𝐺 ∈ Mnd )
gsumval3.a ( 𝜑𝐴𝑉 )
gsumval3.f ( 𝜑𝐹 : 𝐴𝐵 )
gsumval3.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
gsumval3.m ( 𝜑𝑀 ∈ ℕ )
gsumval3.h ( 𝜑𝐻 : ( 1 ... 𝑀 ) –1-1𝐴 )
gsumval3.n ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 )
gsumval3.w 𝑊 = ( ( 𝐹𝐻 ) supp 0 )
Assertion gsumval3lem2 ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 gsumval3.b 𝐵 = ( Base ‘ 𝐺 )
2 gsumval3.0 0 = ( 0g𝐺 )
3 gsumval3.p + = ( +g𝐺 )
4 gsumval3.z 𝑍 = ( Cntz ‘ 𝐺 )
5 gsumval3.g ( 𝜑𝐺 ∈ Mnd )
6 gsumval3.a ( 𝜑𝐴𝑉 )
7 gsumval3.f ( 𝜑𝐹 : 𝐴𝐵 )
8 gsumval3.c ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
9 gsumval3.m ( 𝜑𝑀 ∈ ℕ )
10 gsumval3.h ( 𝜑𝐻 : ( 1 ... 𝑀 ) –1-1𝐴 )
11 gsumval3.n ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ran 𝐻 )
12 gsumval3.w 𝑊 = ( ( 𝐹𝐻 ) supp 0 )
13 f1f ( 𝐻 : ( 1 ... 𝑀 ) –1-1𝐴𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 )
14 10 13 syl ( 𝜑𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 )
15 fzfid ( 𝜑 → ( 1 ... 𝑀 ) ∈ Fin )
16 14 15 fexd ( 𝜑𝐻 ∈ V )
17 vex 𝑓 ∈ V
18 coexg ( ( 𝐻 ∈ V ∧ 𝑓 ∈ V ) → ( 𝐻𝑓 ) ∈ V )
19 16 17 18 sylancl ( 𝜑 → ( 𝐻𝑓 ) ∈ V )
20 19 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻𝑓 ) ∈ V )
21 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem1 ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) )
22 fzfi ( 1 ... 𝑀 ) ∈ Fin
23 suppssdm ( ( 𝐹𝐻 ) supp 0 ) ⊆ dom ( 𝐹𝐻 )
24 12 23 eqsstri 𝑊 ⊆ dom ( 𝐹𝐻 )
25 7 14 fcod ( 𝜑 → ( 𝐹𝐻 ) : ( 1 ... 𝑀 ) ⟶ 𝐵 )
26 24 25 fssdm ( 𝜑𝑊 ⊆ ( 1 ... 𝑀 ) )
27 ssfi ( ( ( 1 ... 𝑀 ) ∈ Fin ∧ 𝑊 ⊆ ( 1 ... 𝑀 ) ) → 𝑊 ∈ Fin )
28 22 26 27 sylancr ( 𝜑𝑊 ∈ Fin )
29 28 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ∈ Fin )
30 10 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐻 : ( 1 ... 𝑀 ) –1-1𝐴 )
31 26 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝑊 ⊆ ( 1 ... 𝑀 ) )
32 f1ores ( ( 𝐻 : ( 1 ... 𝑀 ) –1-1𝐴𝑊 ⊆ ( 1 ... 𝑀 ) ) → ( 𝐻𝑊 ) : 𝑊1-1-onto→ ( 𝐻𝑊 ) )
33 30 31 32 syl2anc ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻𝑊 ) : 𝑊1-1-onto→ ( 𝐻𝑊 ) )
34 12 imaeq2i ( 𝐻𝑊 ) = ( 𝐻 “ ( ( 𝐹𝐻 ) supp 0 ) )
35 7 6 fexd ( 𝜑𝐹 ∈ V )
36 ovex ( 1 ... 𝑀 ) ∈ V
37 fex ( ( 𝐻 : ( 1 ... 𝑀 ) ⟶ 𝐴 ∧ ( 1 ... 𝑀 ) ∈ V ) → 𝐻 ∈ V )
38 14 36 37 sylancl ( 𝜑𝐻 ∈ V )
39 35 38 jca ( 𝜑 → ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) )
40 f1fun ( 𝐻 : ( 1 ... 𝑀 ) –1-1𝐴 → Fun 𝐻 )
41 10 40 syl ( 𝜑 → Fun 𝐻 )
42 41 11 jca ( 𝜑 → ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) )
43 imacosupp ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( Fun 𝐻 ∧ ( 𝐹 supp 0 ) ⊆ ran 𝐻 ) → ( 𝐻 “ ( ( 𝐹𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) ) )
44 39 42 43 sylc ( 𝜑 → ( 𝐻 “ ( ( 𝐹𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) )
45 44 adantr ( ( 𝜑𝑊 ≠ ∅ ) → ( 𝐻 “ ( ( 𝐹𝐻 ) supp 0 ) ) = ( 𝐹 supp 0 ) )
46 34 45 eqtrid ( ( 𝜑𝑊 ≠ ∅ ) → ( 𝐻𝑊 ) = ( 𝐹 supp 0 ) )
47 46 adantr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻𝑊 ) = ( 𝐹 supp 0 ) )
48 47 f1oeq3d ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻𝑊 ) : 𝑊1-1-onto→ ( 𝐻𝑊 ) ↔ ( 𝐻𝑊 ) : 𝑊1-1-onto→ ( 𝐹 supp 0 ) ) )
49 33 48 mpbid ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐻𝑊 ) : 𝑊1-1-onto→ ( 𝐹 supp 0 ) )
50 29 49 hasheqf1od ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 supp 0 ) ) )
51 50 fveq2d ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) )
52 21 51 jca ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) )
53 f1oeq1 ( 𝑔 = ( 𝐻𝑓 ) → ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ↔ ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ) )
54 coeq2 ( 𝑔 = ( 𝐻𝑓 ) → ( 𝐹𝑔 ) = ( 𝐹 ∘ ( 𝐻𝑓 ) ) )
55 54 seqeq3d ( 𝑔 = ( 𝐻𝑓 ) → seq 1 ( + , ( 𝐹𝑔 ) ) = seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) )
56 55 fveq1d ( 𝑔 = ( 𝐻𝑓 ) → ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) )
57 56 eqeq2d ( 𝑔 = ( 𝐻𝑓 ) → ( ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) )
58 53 57 anbi12d ( 𝑔 = ( 𝐻𝑓 ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ( 𝐻𝑓 ) : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) )
59 20 52 58 spcedv ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) )
60 5 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐺 ∈ Mnd )
61 6 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐴𝑉 )
62 7 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → 𝐹 : 𝐴𝐵 )
63 8 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) )
64 f1f1orn ( 𝐻 : ( 1 ... 𝑀 ) –1-1𝐴𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 )
65 10 64 syl ( 𝜑𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 )
66 f1oen3g ( ( 𝐻 ∈ V ∧ 𝐻 : ( 1 ... 𝑀 ) –1-1-onto→ ran 𝐻 ) → ( 1 ... 𝑀 ) ≈ ran 𝐻 )
67 16 65 66 syl2anc ( 𝜑 → ( 1 ... 𝑀 ) ≈ ran 𝐻 )
68 enfi ( ( 1 ... 𝑀 ) ≈ ran 𝐻 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) )
69 67 68 syl ( 𝜑 → ( ( 1 ... 𝑀 ) ∈ Fin ↔ ran 𝐻 ∈ Fin ) )
70 22 69 mpbii ( 𝜑 → ran 𝐻 ∈ Fin )
71 70 11 ssfid ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin )
72 71 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ∈ Fin )
73 12 neeq1i ( 𝑊 ≠ ∅ ↔ ( ( 𝐹𝐻 ) supp 0 ) ≠ ∅ )
74 supp0cosupp0 ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( 𝐹 supp 0 ) = ∅ → ( ( 𝐹𝐻 ) supp 0 ) = ∅ ) )
75 74 necon3d ( ( 𝐹 ∈ V ∧ 𝐻 ∈ V ) → ( ( ( 𝐹𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) )
76 35 38 75 syl2anc ( 𝜑 → ( ( ( 𝐹𝐻 ) supp 0 ) ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) )
77 73 76 syl5bi ( 𝜑 → ( 𝑊 ≠ ∅ → ( 𝐹 supp 0 ) ≠ ∅ ) )
78 77 imp ( ( 𝜑𝑊 ≠ ∅ ) → ( 𝐹 supp 0 ) ≠ ∅ )
79 78 adantr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ≠ ∅ )
80 11 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ ran 𝐻 )
81 14 frnd ( 𝜑 → ran 𝐻𝐴 )
82 81 ad2antrr ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ran 𝐻𝐴 )
83 80 82 sstrd ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐹 supp 0 ) ⊆ 𝐴 )
84 1 2 3 4 60 61 62 63 72 79 83 gsumval3eu ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∃! 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) )
85 iota1 ( ∃! 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) )
86 84 85 syl ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( ℩ 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) )
87 eqid ( 𝐹 supp 0 ) = ( 𝐹 supp 0 )
88 simprl ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ¬ 𝐴 ∈ ran ... )
89 1 2 3 4 60 61 62 63 72 79 87 88 gsumval3a ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( ℩ 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) )
90 89 eqeq1d ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( ℩ 𝑥𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) = 𝑥 ) )
91 86 90 bitr4d ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) )
92 91 alrimiv ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) )
93 fvex ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ∈ V
94 eqeq1 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ↔ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) )
95 94 anbi2d ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) )
96 95 exbidv ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ) )
97 eqeq2 ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐺 Σg 𝐹 ) = 𝑥 ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )
98 96 97 bibi12d ( 𝑥 = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) → ( ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) ↔ ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) ) )
99 93 98 spcv ( ∀ 𝑥 ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ 𝑥 = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = 𝑥 ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )
100 92 99 syl ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( ∃ 𝑔 ( 𝑔 : ( 1 ... ( ♯ ‘ ( 𝐹 supp 0 ) ) ) –1-1-onto→ ( 𝐹 supp 0 ) ∧ ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) = ( seq 1 ( + , ( 𝐹𝑔 ) ) ‘ ( ♯ ‘ ( 𝐹 supp 0 ) ) ) ) ↔ ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) ) )
101 59 100 mpbid ( ( ( 𝜑𝑊 ≠ ∅ ) ∧ ( ¬ 𝐴 ∈ ran ... ∧ 𝑓 Isom < , < ( ( 1 ... ( ♯ ‘ 𝑊 ) ) , 𝑊 ) ) ) → ( 𝐺 Σg 𝐹 ) = ( seq 1 ( + , ( 𝐹 ∘ ( 𝐻𝑓 ) ) ) ‘ ( ♯ ‘ 𝑊 ) ) )