| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|- B = ( Base ` G ) |
| 2 |
|
gsumval3.0 |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsumval3.p |
|- .+ = ( +g ` G ) |
| 4 |
|
gsumval3.z |
|- Z = ( Cntz ` G ) |
| 5 |
|
gsumval3.g |
|- ( ph -> G e. Mnd ) |
| 6 |
|
gsumval3.a |
|- ( ph -> A e. V ) |
| 7 |
|
gsumval3.f |
|- ( ph -> F : A --> B ) |
| 8 |
|
gsumval3.c |
|- ( ph -> ran F C_ ( Z ` ran F ) ) |
| 9 |
|
gsumval3.m |
|- ( ph -> M e. NN ) |
| 10 |
|
gsumval3.h |
|- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
| 11 |
|
gsumval3.n |
|- ( ph -> ( F supp .0. ) C_ ran H ) |
| 12 |
|
gsumval3.w |
|- W = ( ( F o. H ) supp .0. ) |
| 13 |
|
f1f |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
| 14 |
10 13
|
syl |
|- ( ph -> H : ( 1 ... M ) --> A ) |
| 15 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 16 |
14 15
|
fexd |
|- ( ph -> H e. _V ) |
| 17 |
|
vex |
|- f e. _V |
| 18 |
|
coexg |
|- ( ( H e. _V /\ f e. _V ) -> ( H o. f ) e. _V ) |
| 19 |
16 17 18
|
sylancl |
|- ( ph -> ( H o. f ) e. _V ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) e. _V ) |
| 21 |
1 2 3 4 5 6 7 8 9 10 11 12
|
gsumval3lem1 |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) |
| 22 |
|
fzfi |
|- ( 1 ... M ) e. Fin |
| 23 |
|
suppssdm |
|- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
| 24 |
12 23
|
eqsstri |
|- W C_ dom ( F o. H ) |
| 25 |
7 14
|
fcod |
|- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 26 |
24 25
|
fssdm |
|- ( ph -> W C_ ( 1 ... M ) ) |
| 27 |
|
ssfi |
|- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
| 28 |
22 26 27
|
sylancr |
|- ( ph -> W e. Fin ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W e. Fin ) |
| 30 |
10
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> H : ( 1 ... M ) -1-1-> A ) |
| 31 |
26
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
| 32 |
|
f1ores |
|- ( ( H : ( 1 ... M ) -1-1-> A /\ W C_ ( 1 ... M ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
| 33 |
30 31 32
|
syl2anc |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
| 34 |
12
|
imaeq2i |
|- ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) |
| 35 |
7 6
|
fexd |
|- ( ph -> F e. _V ) |
| 36 |
|
ovex |
|- ( 1 ... M ) e. _V |
| 37 |
|
fex |
|- ( ( H : ( 1 ... M ) --> A /\ ( 1 ... M ) e. _V ) -> H e. _V ) |
| 38 |
14 36 37
|
sylancl |
|- ( ph -> H e. _V ) |
| 39 |
35 38
|
jca |
|- ( ph -> ( F e. _V /\ H e. _V ) ) |
| 40 |
|
f1fun |
|- ( H : ( 1 ... M ) -1-1-> A -> Fun H ) |
| 41 |
10 40
|
syl |
|- ( ph -> Fun H ) |
| 42 |
41 11
|
jca |
|- ( ph -> ( Fun H /\ ( F supp .0. ) C_ ran H ) ) |
| 43 |
|
imacosupp |
|- ( ( F e. _V /\ H e. _V ) -> ( ( Fun H /\ ( F supp .0. ) C_ ran H ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) ) |
| 44 |
39 42 43
|
sylc |
|- ( ph -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 45 |
44
|
adantr |
|- ( ( ph /\ W =/= (/) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 46 |
34 45
|
eqtrid |
|- ( ( ph /\ W =/= (/) ) -> ( H " W ) = ( F supp .0. ) ) |
| 47 |
46
|
adantr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) |
| 48 |
47
|
f1oeq3d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) |
| 49 |
33 48
|
mpbid |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) |
| 50 |
29 49
|
hasheqf1od |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( # ` W ) = ( # ` ( F supp .0. ) ) ) |
| 51 |
50
|
fveq2d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 52 |
21 51
|
jca |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 53 |
|
f1oeq1 |
|- ( g = ( H o. f ) -> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) |
| 54 |
|
coeq2 |
|- ( g = ( H o. f ) -> ( F o. g ) = ( F o. ( H o. f ) ) ) |
| 55 |
54
|
seqeq3d |
|- ( g = ( H o. f ) -> seq 1 ( .+ , ( F o. g ) ) = seq 1 ( .+ , ( F o. ( H o. f ) ) ) ) |
| 56 |
55
|
fveq1d |
|- ( g = ( H o. f ) -> ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 57 |
56
|
eqeq2d |
|- ( g = ( H o. f ) -> ( ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 58 |
53 57
|
anbi12d |
|- ( g = ( H o. f ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 59 |
20 52 58
|
spcedv |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 60 |
5
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) |
| 61 |
6
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A e. V ) |
| 62 |
7
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> F : A --> B ) |
| 63 |
8
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 64 |
|
f1f1orn |
|- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 65 |
10 64
|
syl |
|- ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 66 |
|
f1oen3g |
|- ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) |
| 67 |
16 65 66
|
syl2anc |
|- ( ph -> ( 1 ... M ) ~~ ran H ) |
| 68 |
|
enfi |
|- ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 69 |
67 68
|
syl |
|- ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 70 |
22 69
|
mpbii |
|- ( ph -> ran H e. Fin ) |
| 71 |
70 11
|
ssfid |
|- ( ph -> ( F supp .0. ) e. Fin ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) e. Fin ) |
| 73 |
12
|
neeq1i |
|- ( W =/= (/) <-> ( ( F o. H ) supp .0. ) =/= (/) ) |
| 74 |
|
supp0cosupp0 |
|- ( ( F e. _V /\ H e. _V ) -> ( ( F supp .0. ) = (/) -> ( ( F o. H ) supp .0. ) = (/) ) ) |
| 75 |
74
|
necon3d |
|- ( ( F e. _V /\ H e. _V ) -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 76 |
35 38 75
|
syl2anc |
|- ( ph -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 77 |
73 76
|
biimtrid |
|- ( ph -> ( W =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 78 |
77
|
imp |
|- ( ( ph /\ W =/= (/) ) -> ( F supp .0. ) =/= (/) ) |
| 79 |
78
|
adantr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) =/= (/) ) |
| 80 |
11
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ ran H ) |
| 81 |
14
|
frnd |
|- ( ph -> ran H C_ A ) |
| 82 |
81
|
ad2antrr |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran H C_ A ) |
| 83 |
80 82
|
sstrd |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ A ) |
| 84 |
1 2 3 4 60 61 62 63 72 79 83
|
gsumval3eu |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 85 |
|
iota1 |
|- ( E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
| 86 |
84 85
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
| 87 |
|
eqid |
|- ( F supp .0. ) = ( F supp .0. ) |
| 88 |
|
simprl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> -. A e. ran ... ) |
| 89 |
1 2 3 4 60 61 62 63 72 79 87 88
|
gsumval3a |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 90 |
89
|
eqeq1d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( G gsum F ) = x <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
| 91 |
86 90
|
bitr4d |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) |
| 92 |
91
|
alrimiv |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) |
| 93 |
|
fvex |
|- ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) e. _V |
| 94 |
|
eqeq1 |
|- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 95 |
94
|
anbi2d |
|- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 96 |
95
|
exbidv |
|- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 97 |
|
eqeq2 |
|- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( G gsum F ) = x <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
| 98 |
96 97
|
bibi12d |
|- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) <-> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) ) |
| 99 |
93 98
|
spcv |
|- ( A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
| 100 |
92 99
|
syl |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
| 101 |
59 100
|
mpbid |
|- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |