| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumval3.b |
|
| 2 |
|
gsumval3.0 |
|
| 3 |
|
gsumval3.p |
|
| 4 |
|
gsumval3.z |
|
| 5 |
|
gsumval3.g |
|
| 6 |
|
gsumval3.a |
|
| 7 |
|
gsumval3.f |
|
| 8 |
|
gsumval3.c |
|
| 9 |
|
gsumval3a.t |
|
| 10 |
|
gsumval3a.n |
|
| 11 |
|
gsumval3a.s |
|
| 12 |
10
|
neneqd |
|
| 13 |
|
fz1f1o |
|
| 14 |
9 13
|
syl |
|
| 15 |
14
|
ord |
|
| 16 |
12 15
|
mpd |
|
| 17 |
16
|
simprd |
|
| 18 |
|
excom |
|
| 19 |
|
exancom |
|
| 20 |
|
fvex |
|
| 21 |
|
biidd |
|
| 22 |
20 21
|
ceqsexv |
|
| 23 |
19 22
|
bitri |
|
| 24 |
23
|
exbii |
|
| 25 |
18 24
|
bitri |
|
| 26 |
17 25
|
sylibr |
|
| 27 |
|
exdistrv |
|
| 28 |
|
an4 |
|
| 29 |
5
|
adantr |
|
| 30 |
1 3
|
mndcl |
|
| 31 |
30
|
3expb |
|
| 32 |
29 31
|
sylan |
|
| 33 |
8
|
adantr |
|
| 34 |
33
|
sselda |
|
| 35 |
34
|
adantrr |
|
| 36 |
|
simprr |
|
| 37 |
3 4
|
cntzi |
|
| 38 |
35 36 37
|
syl2anc |
|
| 39 |
1 3
|
mndass |
|
| 40 |
29 39
|
sylan |
|
| 41 |
16
|
simpld |
|
| 42 |
41
|
adantr |
|
| 43 |
|
nnuz |
|
| 44 |
42 43
|
eleqtrdi |
|
| 45 |
7
|
adantr |
|
| 46 |
45
|
frnd |
|
| 47 |
|
simprr |
|
| 48 |
|
f1ocnv |
|
| 49 |
47 48
|
syl |
|
| 50 |
|
simprl |
|
| 51 |
|
f1oco |
|
| 52 |
49 50 51
|
syl2anc |
|
| 53 |
|
f1of |
|
| 54 |
47 53
|
syl |
|
| 55 |
|
fvco3 |
|
| 56 |
54 55
|
sylan |
|
| 57 |
45
|
ffnd |
|
| 58 |
11
|
adantr |
|
| 59 |
54 58
|
fssd |
|
| 60 |
59
|
ffvelcdmda |
|
| 61 |
|
fnfvelrn |
|
| 62 |
57 60 61
|
syl2an2r |
|
| 63 |
56 62
|
eqeltrd |
|
| 64 |
|
f1of |
|
| 65 |
50 64
|
syl |
|
| 66 |
|
fvco3 |
|
| 67 |
65 66
|
sylan |
|
| 68 |
67
|
fveq2d |
|
| 69 |
65
|
ffvelcdmda |
|
| 70 |
|
f1ocnvfv2 |
|
| 71 |
47 69 70
|
syl2an2r |
|
| 72 |
68 71
|
eqtr2d |
|
| 73 |
72
|
fveq2d |
|
| 74 |
|
fvco3 |
|
| 75 |
65 74
|
sylan |
|
| 76 |
|
f1of |
|
| 77 |
52 76
|
syl |
|
| 78 |
77
|
ffvelcdmda |
|
| 79 |
|
fvco3 |
|
| 80 |
59 78 79
|
syl2an2r |
|
| 81 |
73 75 80
|
3eqtr4d |
|
| 82 |
32 38 40 44 46 52 63 81
|
seqf1o |
|
| 83 |
|
eqeq12 |
|
| 84 |
82 83
|
syl5ibrcom |
|
| 85 |
84
|
expimpd |
|
| 86 |
28 85
|
biimtrrid |
|
| 87 |
86
|
exlimdvv |
|
| 88 |
27 87
|
biimtrrid |
|
| 89 |
88
|
alrimivv |
|
| 90 |
|
eqeq1 |
|
| 91 |
90
|
anbi2d |
|
| 92 |
91
|
exbidv |
|
| 93 |
|
f1oeq1 |
|
| 94 |
|
coeq2 |
|
| 95 |
94
|
seqeq3d |
|
| 96 |
95
|
fveq1d |
|
| 97 |
96
|
eqeq2d |
|
| 98 |
93 97
|
anbi12d |
|
| 99 |
98
|
cbvexvw |
|
| 100 |
92 99
|
bitrdi |
|
| 101 |
100
|
eu4 |
|
| 102 |
26 89 101
|
sylanbrc |
|