| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1stres | ⊢ ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐽 | 
						
							| 2 |  | ffn | ⊢ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐽  →  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) | 
						
							| 4 |  | fvco2 | ⊢ ( ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) ) ) | 
						
							| 5 | 3 4 | mpan | ⊢ ( 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  →  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) ) ) | 
						
							| 7 |  | fvres | ⊢ ( 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  →  ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 )  =  ( 1st  ‘ 𝑎 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  →  ( 𝐹 ‘ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) )  =  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) ) ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( 𝐹 ‘ ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) )  =  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) ) ) | 
						
							| 10 | 6 9 | eqtrd | ⊢ ( ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) ) ) | 
						
							| 11 |  | fvres | ⊢ ( 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  →  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 )  =  ( 2nd  ‘ 𝑎 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 )  =  ( 2nd  ‘ 𝑎 ) ) | 
						
							| 13 | 10 12 | eqeq12d | ⊢ ( ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  ∧  𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  ( ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 )  ↔  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) )  =  ( 2nd  ‘ 𝑎 ) ) ) | 
						
							| 14 | 13 | rabbidva | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) }  =  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) )  =  ( 2nd  ‘ 𝑎 ) } ) | 
						
							| 15 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 16 |  | eqid | ⊢ ∪  𝐾  =  ∪  𝐾 | 
						
							| 17 | 15 16 | cnf | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹 : ∪  𝐽 ⟶ ∪  𝐾 ) | 
						
							| 19 |  | fco | ⊢ ( ( 𝐹 : ∪  𝐽 ⟶ ∪  𝐾  ∧  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐽 )  →  ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐾 ) | 
						
							| 20 | 18 1 19 | sylancl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐾 ) | 
						
							| 21 | 20 | ffnd | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) ) | 
						
							| 22 |  | f2ndres | ⊢ ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐾 | 
						
							| 23 |  | ffn | ⊢ ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) : ( ∪  𝐽  ×  ∪  𝐾 ) ⟶ ∪  𝐾  →  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) ) | 
						
							| 24 | 22 23 | ax-mp | ⊢ ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) | 
						
							| 25 |  | fndmin | ⊢ ( ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 )  ∧  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  Fn  ( ∪  𝐽  ×  ∪  𝐾 ) )  →  dom  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∩  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  =  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) } ) | 
						
							| 26 | 21 24 25 | sylancl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  dom  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∩  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  =  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ‘ 𝑎 )  =  ( ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ‘ 𝑎 ) } ) | 
						
							| 27 |  | fgraphxp | ⊢ ( 𝐹 : ∪  𝐽 ⟶ ∪  𝐾  →  𝐹  =  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) )  =  ( 2nd  ‘ 𝑎 ) } ) | 
						
							| 28 | 18 27 | syl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  =  { 𝑎  ∈  ( ∪  𝐽  ×  ∪  𝐾 )  ∣  ( 𝐹 ‘ ( 1st  ‘ 𝑎 ) )  =  ( 2nd  ‘ 𝑎 ) } ) | 
						
							| 29 | 14 26 28 | 3eqtr4rd | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  =  dom  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∩  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) ) ) | 
						
							| 30 |  | simpl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  Haus ) | 
						
							| 31 |  | cntop1 | ⊢ ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  ∈  Top ) | 
						
							| 33 | 15 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 34 | 32 33 | sylib | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) ) | 
						
							| 35 |  | haustop | ⊢ ( 𝐾  ∈  Haus  →  𝐾  ∈  Top ) | 
						
							| 36 | 30 35 | syl | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  Top ) | 
						
							| 37 | 16 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 38 | 36 37 | sylib | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) ) | 
						
							| 39 |  | tx1cn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) )  →  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐽 ) ) | 
						
							| 40 | 34 38 39 | syl2anc | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐽 ) ) | 
						
							| 41 |  | cnco | ⊢ ( ( ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐽 )  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐾 ) ) | 
						
							| 42 | 40 41 | sylancom | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐾 ) ) | 
						
							| 43 |  | tx2cn | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝐾  ∈  ( TopOn ‘ ∪  𝐾 ) )  →  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐾 ) ) | 
						
							| 44 | 34 38 43 | syl2anc | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) )  ∈  ( ( 𝐽  ×t  𝐾 )  Cn  𝐾 ) ) | 
						
							| 45 | 30 42 44 | hauseqlcld | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  dom  ( ( 𝐹  ∘  ( 1st   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∩  ( 2nd   ↾  ( ∪  𝐽  ×  ∪  𝐾 ) ) )  ∈  ( Clsd ‘ ( 𝐽  ×t  𝐾 ) ) ) | 
						
							| 46 | 29 45 | eqeltrd | ⊢ ( ( 𝐾  ∈  Haus  ∧  𝐹  ∈  ( 𝐽  Cn  𝐾 ) )  →  𝐹  ∈  ( Clsd ‘ ( 𝐽  ×t  𝐾 ) ) ) |