Step |
Hyp |
Ref |
Expression |
1 |
|
f1stres |
⊢ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐽 |
2 |
|
ffn |
⊢ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐽 → ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ) |
3 |
1 2
|
ax-mp |
⊢ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) |
4 |
|
fvco2 |
⊢ ( ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ) ) |
5 |
3 4
|
mpan |
⊢ ( 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) → ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ) ) |
6 |
5
|
adantl |
⊢ ( ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ) ) |
7 |
|
fvres |
⊢ ( 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) → ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) = ( 1st ‘ 𝑎 ) ) |
8 |
7
|
fveq2d |
⊢ ( 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) → ( 𝐹 ‘ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( 𝐹 ‘ ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ) = ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) ) |
11 |
|
fvres |
⊢ ( 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) → ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) = ( 2nd ‘ 𝑎 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) = ( 2nd ‘ 𝑎 ) ) |
13 |
10 12
|
eqeq12d |
⊢ ( ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) ∧ 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ) → ( ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) ↔ ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) = ( 2nd ‘ 𝑎 ) ) ) |
14 |
13
|
rabbidva |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) } = { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) = ( 2nd ‘ 𝑎 ) } ) |
15 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
16 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
17 |
15 16
|
cnf |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
18 |
17
|
adantl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ) |
19 |
|
fco |
⊢ ( ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 ∧ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐽 ) → ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐾 ) |
20 |
18 1 19
|
sylancl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐾 ) |
21 |
20
|
ffnd |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ) |
22 |
|
f2ndres |
⊢ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐾 |
23 |
|
ffn |
⊢ ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) : ( ∪ 𝐽 × ∪ 𝐾 ) ⟶ ∪ 𝐾 → ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ) |
24 |
22 23
|
ax-mp |
⊢ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) |
25 |
|
fndmin |
⊢ ( ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ∧ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) Fn ( ∪ 𝐽 × ∪ 𝐾 ) ) → dom ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∩ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) = { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) } ) |
26 |
21 24 25
|
sylancl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∩ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) = { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ‘ 𝑎 ) = ( ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ‘ 𝑎 ) } ) |
27 |
|
fgraphxp |
⊢ ( 𝐹 : ∪ 𝐽 ⟶ ∪ 𝐾 → 𝐹 = { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) = ( 2nd ‘ 𝑎 ) } ) |
28 |
18 27
|
syl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 = { 𝑎 ∈ ( ∪ 𝐽 × ∪ 𝐾 ) ∣ ( 𝐹 ‘ ( 1st ‘ 𝑎 ) ) = ( 2nd ‘ 𝑎 ) } ) |
29 |
14 26 28
|
3eqtr4rd |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 = dom ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∩ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ) |
30 |
|
simpl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Haus ) |
31 |
|
cntop1 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐽 ∈ Top ) |
32 |
31
|
adantl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ Top ) |
33 |
15
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
34 |
32 33
|
sylib |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
35 |
|
haustop |
⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) |
36 |
30 35
|
syl |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ Top ) |
37 |
16
|
toptopon |
⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
38 |
36 37
|
sylib |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) |
39 |
|
tx1cn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
40 |
34 38 39
|
syl2anc |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ) |
41 |
|
cnco |
⊢ ( ( ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐽 ) ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
42 |
40 41
|
sylancom |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
43 |
|
tx2cn |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝐾 ∈ ( TopOn ‘ ∪ 𝐾 ) ) → ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
44 |
34 38 43
|
syl2anc |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝐾 ) ) |
45 |
30 42 44
|
hauseqlcld |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → dom ( ( 𝐹 ∘ ( 1st ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∩ ( 2nd ↾ ( ∪ 𝐽 × ∪ 𝐾 ) ) ) ∈ ( Clsd ‘ ( 𝐽 ×t 𝐾 ) ) ) |
46 |
29 45
|
eqeltrd |
⊢ ( ( 𝐾 ∈ Haus ∧ 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) → 𝐹 ∈ ( Clsd ‘ ( 𝐽 ×t 𝐾 ) ) ) |