Metamath Proof Explorer


Theorem hausgraph

Description: The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion hausgraph K Haus F J Cn K F Clsd J × t K

Proof

Step Hyp Ref Expression
1 f1stres 1 st J × K : J × K J
2 ffn 1 st J × K : J × K J 1 st J × K Fn J × K
3 1 2 ax-mp 1 st J × K Fn J × K
4 fvco2 1 st J × K Fn J × K a J × K F 1 st J × K a = F 1 st J × K a
5 3 4 mpan a J × K F 1 st J × K a = F 1 st J × K a
6 5 adantl K Haus F J Cn K a J × K F 1 st J × K a = F 1 st J × K a
7 fvres a J × K 1 st J × K a = 1 st a
8 7 fveq2d a J × K F 1 st J × K a = F 1 st a
9 8 adantl K Haus F J Cn K a J × K F 1 st J × K a = F 1 st a
10 6 9 eqtrd K Haus F J Cn K a J × K F 1 st J × K a = F 1 st a
11 fvres a J × K 2 nd J × K a = 2 nd a
12 11 adantl K Haus F J Cn K a J × K 2 nd J × K a = 2 nd a
13 10 12 eqeq12d K Haus F J Cn K a J × K F 1 st J × K a = 2 nd J × K a F 1 st a = 2 nd a
14 13 rabbidva K Haus F J Cn K a J × K | F 1 st J × K a = 2 nd J × K a = a J × K | F 1 st a = 2 nd a
15 eqid J = J
16 eqid K = K
17 15 16 cnf F J Cn K F : J K
18 17 adantl K Haus F J Cn K F : J K
19 fco F : J K 1 st J × K : J × K J F 1 st J × K : J × K K
20 18 1 19 sylancl K Haus F J Cn K F 1 st J × K : J × K K
21 20 ffnd K Haus F J Cn K F 1 st J × K Fn J × K
22 f2ndres 2 nd J × K : J × K K
23 ffn 2 nd J × K : J × K K 2 nd J × K Fn J × K
24 22 23 ax-mp 2 nd J × K Fn J × K
25 fndmin F 1 st J × K Fn J × K 2 nd J × K Fn J × K dom F 1 st J × K 2 nd J × K = a J × K | F 1 st J × K a = 2 nd J × K a
26 21 24 25 sylancl K Haus F J Cn K dom F 1 st J × K 2 nd J × K = a J × K | F 1 st J × K a = 2 nd J × K a
27 fgraphxp F : J K F = a J × K | F 1 st a = 2 nd a
28 18 27 syl K Haus F J Cn K F = a J × K | F 1 st a = 2 nd a
29 14 26 28 3eqtr4rd K Haus F J Cn K F = dom F 1 st J × K 2 nd J × K
30 simpl K Haus F J Cn K K Haus
31 cntop1 F J Cn K J Top
32 31 adantl K Haus F J Cn K J Top
33 15 toptopon J Top J TopOn J
34 32 33 sylib K Haus F J Cn K J TopOn J
35 haustop K Haus K Top
36 30 35 syl K Haus F J Cn K K Top
37 16 toptopon K Top K TopOn K
38 36 37 sylib K Haus F J Cn K K TopOn K
39 tx1cn J TopOn J K TopOn K 1 st J × K J × t K Cn J
40 34 38 39 syl2anc K Haus F J Cn K 1 st J × K J × t K Cn J
41 cnco 1 st J × K J × t K Cn J F J Cn K F 1 st J × K J × t K Cn K
42 40 41 sylancom K Haus F J Cn K F 1 st J × K J × t K Cn K
43 tx2cn J TopOn J K TopOn K 2 nd J × K J × t K Cn K
44 34 38 43 syl2anc K Haus F J Cn K 2 nd J × K J × t K Cn K
45 30 42 44 hauseqlcld K Haus F J Cn K dom F 1 st J × K 2 nd J × K Clsd J × t K
46 29 45 eqeltrd K Haus F J Cn K F Clsd J × t K