| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hmeoopn.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
|
hmeocn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| 4 |
|
imassrn |
⊢ ( 𝐹 “ 𝐴 ) ⊆ ran 𝐹 |
| 5 |
|
eqid |
⊢ ∪ 𝐾 = ∪ 𝐾 |
| 6 |
1 5
|
hmeof1o |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 ) |
| 8 |
|
f1ofo |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –onto→ ∪ 𝐾 ) |
| 9 |
|
forn |
⊢ ( 𝐹 : 𝑋 –onto→ ∪ 𝐾 → ran 𝐹 = ∪ 𝐾 ) |
| 10 |
7 8 9
|
3syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ran 𝐹 = ∪ 𝐾 ) |
| 11 |
4 10
|
sseqtrid |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) |
| 12 |
5
|
cnntri |
⊢ ( ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
| 13 |
3 11 12
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) ) |
| 14 |
|
f1of1 |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 15 |
7 14
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ) |
| 16 |
|
f1imacnv |
⊢ ( ( 𝐹 : 𝑋 –1-1→ ∪ 𝐾 ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 17 |
15 16
|
sylancom |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) = 𝐴 ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐽 ) ‘ ( ◡ 𝐹 “ ( 𝐹 “ 𝐴 ) ) ) = ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 19 |
13 18
|
sseqtrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 20 |
|
f1ofun |
⊢ ( 𝐹 : 𝑋 –1-1-onto→ ∪ 𝐾 → Fun 𝐹 ) |
| 21 |
7 20
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → Fun 𝐹 ) |
| 22 |
|
cntop2 |
⊢ ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) → 𝐾 ∈ Top ) |
| 23 |
3 22
|
syl |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → 𝐾 ∈ Top ) |
| 24 |
5
|
ntrss3 |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ 𝐴 ) ⊆ ∪ 𝐾 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
| 25 |
23 11 24
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ∪ 𝐾 ) |
| 26 |
25 10
|
sseqtrrd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) |
| 27 |
|
funimass1 |
⊢ ( ( Fun 𝐹 ∧ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ran 𝐹 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 28 |
21 26 27
|
syl2anc |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( ◡ 𝐹 “ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) ⊆ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) ) |
| 29 |
19 28
|
mpd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ⊆ ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |
| 30 |
|
hmeocnvcn |
⊢ ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) → ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ) |
| 31 |
1
|
cnntri |
⊢ ( ( ◡ 𝐹 ∈ ( 𝐾 Cn 𝐽 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
| 32 |
30 31
|
sylan |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) ) |
| 33 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 34 |
|
imacnvcnv |
⊢ ( ◡ ◡ 𝐹 “ 𝐴 ) = ( 𝐹 “ 𝐴 ) |
| 35 |
34
|
fveq2i |
⊢ ( ( int ‘ 𝐾 ) ‘ ( ◡ ◡ 𝐹 “ 𝐴 ) ) = ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) |
| 36 |
32 33 35
|
3sstr3g |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ⊆ ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) ) |
| 37 |
29 36
|
eqssd |
⊢ ( ( 𝐹 ∈ ( 𝐽 Homeo 𝐾 ) ∧ 𝐴 ⊆ 𝑋 ) → ( ( int ‘ 𝐾 ) ‘ ( 𝐹 “ 𝐴 ) ) = ( 𝐹 “ ( ( int ‘ 𝐽 ) ‘ 𝐴 ) ) ) |