Metamath Proof Explorer


Theorem iindif2

Description: Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws" in Enderton p. 31. Use uniiun to recover Enderton's theorem. (Contributed by NM, 5-Oct-2006)

Ref Expression
Assertion iindif2 ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )

Proof

Step Hyp Ref Expression
1 r19.28zv ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 ¬ 𝑦𝐶 ) ) )
2 eldif ( 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) )
3 2 bicomi ( ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ 𝑦 ∈ ( 𝐵𝐶 ) )
4 3 ralbii ( ∀ 𝑥𝐴 ( 𝑦𝐵 ∧ ¬ 𝑦𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
5 ralnex ( ∀ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ ∃ 𝑥𝐴 𝑦𝐶 )
6 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
7 5 6 xchbinxr ( ∀ 𝑥𝐴 ¬ 𝑦𝐶 ↔ ¬ 𝑦 𝑥𝐴 𝐶 )
8 7 anbi2i ( ( 𝑦𝐵 ∧ ∀ 𝑥𝐴 ¬ 𝑦𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
9 1 4 8 3bitr3g ( 𝐴 ≠ ∅ → ( ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) ) )
10 eliin ( 𝑦 ∈ V → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) ) )
11 10 elv ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ ∀ 𝑥𝐴 𝑦 ∈ ( 𝐵𝐶 ) )
12 eldif ( 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ↔ ( 𝑦𝐵 ∧ ¬ 𝑦 𝑥𝐴 𝐶 ) )
13 9 11 12 3bitr4g ( 𝐴 ≠ ∅ → ( 𝑦 𝑥𝐴 ( 𝐵𝐶 ) ↔ 𝑦 ∈ ( 𝐵 𝑥𝐴 𝐶 ) ) )
14 13 eqrdv ( 𝐴 ≠ ∅ → 𝑥𝐴 ( 𝐵𝐶 ) = ( 𝐵 𝑥𝐴 𝐶 ) )