Metamath Proof Explorer


Theorem intprg

Description: The intersection of a pair is the intersection of its members. Closed form of intpr . Theorem 71 of Suppes p. 42. (Contributed by FL, 27-Apr-2008) (Proof shortened by BJ, 1-Sep-2024)

Ref Expression
Assertion intprg ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 elint ( 𝑥 { 𝐴 , 𝐵 } ↔ ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥𝑦 ) )
3 vex 𝑦 ∈ V
4 3 elpr ( 𝑦 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑦 = 𝐴𝑦 = 𝐵 ) )
5 4 imbi1i ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥𝑦 ) ↔ ( ( 𝑦 = 𝐴𝑦 = 𝐵 ) → 𝑥𝑦 ) )
6 jaob ( ( ( 𝑦 = 𝐴𝑦 = 𝐵 ) → 𝑥𝑦 ) ↔ ( ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ( 𝑦 = 𝐵𝑥𝑦 ) ) )
7 5 6 bitri ( ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥𝑦 ) ↔ ( ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ( 𝑦 = 𝐵𝑥𝑦 ) ) )
8 7 albii ( ∀ 𝑦 ( 𝑦 ∈ { 𝐴 , 𝐵 } → 𝑥𝑦 ) ↔ ∀ 𝑦 ( ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ( 𝑦 = 𝐵𝑥𝑦 ) ) )
9 19.26 ( ∀ 𝑦 ( ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ( 𝑦 = 𝐵𝑥𝑦 ) ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵𝑥𝑦 ) ) )
10 2 8 9 3bitri ( 𝑥 { 𝐴 , 𝐵 } ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵𝑥𝑦 ) ) )
11 elin ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴𝑥𝐵 ) )
12 clel4g ( 𝐴𝑉 → ( 𝑥𝐴 ↔ ∀ 𝑦 ( 𝑦 = 𝐴𝑥𝑦 ) ) )
13 clel4g ( 𝐵𝑊 → ( 𝑥𝐵 ↔ ∀ 𝑦 ( 𝑦 = 𝐵𝑥𝑦 ) ) )
14 12 13 bi2anan9 ( ( 𝐴𝑉𝐵𝑊 ) → ( ( 𝑥𝐴𝑥𝐵 ) ↔ ( ∀ 𝑦 ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵𝑥𝑦 ) ) ) )
15 11 14 bitr2id ( ( 𝐴𝑉𝐵𝑊 ) → ( ( ∀ 𝑦 ( 𝑦 = 𝐴𝑥𝑦 ) ∧ ∀ 𝑦 ( 𝑦 = 𝐵𝑥𝑦 ) ) ↔ 𝑥 ∈ ( 𝐴𝐵 ) ) )
16 10 15 bitrid ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝑥 { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴𝐵 ) ) )
17 16 alrimiv ( ( 𝐴𝑉𝐵𝑊 ) → ∀ 𝑥 ( 𝑥 { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴𝐵 ) ) )
18 dfcleq ( { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) ↔ ∀ 𝑥 ( 𝑥 { 𝐴 , 𝐵 } ↔ 𝑥 ∈ ( 𝐴𝐵 ) ) )
19 17 18 sylibr ( ( 𝐴𝑉𝐵𝑊 ) → { 𝐴 , 𝐵 } = ( 𝐴𝐵 ) )