| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iscfil |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ) ) |
| 2 |
|
xmetf |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 3 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 4 |
3
|
ffund |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → Fun 𝐷 ) |
| 5 |
|
filelss |
⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) |
| 6 |
5
|
ad4ant24 |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → 𝑦 ⊆ 𝑋 ) |
| 7 |
|
xpss12 |
⊢ ( ( 𝑦 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑋 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 8 |
6 6 7
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 × 𝑦 ) ⊆ ( 𝑋 × 𝑋 ) ) |
| 9 |
3
|
fdmd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → dom 𝐷 = ( 𝑋 × 𝑋 ) ) |
| 10 |
8 9
|
sseqtrrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) |
| 11 |
|
funimassov |
⊢ ( ( Fun 𝐷 ∧ ( 𝑦 × 𝑦 ) ⊆ dom 𝐷 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ) ) |
| 12 |
4 10 11
|
syl2anc |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ) ) |
| 13 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 14 |
13
|
a1i |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 0 ∈ ℝ* ) |
| 15 |
|
simpllr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑥 ∈ ℝ+ ) |
| 16 |
15
|
rpxrd |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑥 ∈ ℝ* ) |
| 17 |
|
simp-4l |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 |
6
|
sselda |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑧 ∈ 𝑦 ) → 𝑧 ∈ 𝑋 ) |
| 19 |
18
|
adantrr |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑧 ∈ 𝑋 ) |
| 20 |
6
|
sselda |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ 𝑤 ∈ 𝑦 ) → 𝑤 ∈ 𝑋 ) |
| 21 |
20
|
adantrl |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 𝑤 ∈ 𝑋 ) |
| 22 |
|
xmetcl |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ) |
| 23 |
17 19 21 22
|
syl3anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ) |
| 24 |
|
xmetge0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → 0 ≤ ( 𝑧 𝐷 𝑤 ) ) |
| 25 |
17 19 21 24
|
syl3anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → 0 ≤ ( 𝑧 𝐷 𝑤 ) ) |
| 26 |
|
elico1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 27 |
|
df-3an |
⊢ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ↔ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 28 |
26 27
|
bitrdi |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ∧ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 29 |
28
|
baibd |
⊢ ( ( ( 0 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( ( 𝑧 𝐷 𝑤 ) ∈ ℝ* ∧ 0 ≤ ( 𝑧 𝐷 𝑤 ) ) ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 30 |
14 16 23 25 29
|
syl22anc |
⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) ∧ ( 𝑧 ∈ 𝑦 ∧ 𝑤 ∈ 𝑦 ) ) → ( ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 31 |
30
|
2ralbidva |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) ∈ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 32 |
12 31
|
bitrd |
⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝐹 ) → ( ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 33 |
32
|
rexbidva |
⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 34 |
33
|
ralbidva |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ) → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) |
| 35 |
34
|
pm5.32da |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ( 𝐷 “ ( 𝑦 × 𝑦 ) ) ⊆ ( 0 [,) 𝑥 ) ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |
| 36 |
1 35
|
bitrd |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝐹 ∀ 𝑧 ∈ 𝑦 ∀ 𝑤 ∈ 𝑦 ( 𝑧 𝐷 𝑤 ) < 𝑥 ) ) ) |