| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ngprcan.x | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | ngprcan.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | ngprcan.d | ⊢ 𝐷  =  ( dist ‘ 𝐺 ) | 
						
							| 4 |  | ngpgrp | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  Grp ) | 
						
							| 5 |  | ngpms | ⊢ ( 𝐺  ∈  NrmGrp  →  𝐺  ∈  MetSp ) | 
						
							| 6 | 1 2 3 | ngprcan | ⊢ ( ( 𝐺  ∈  NrmGrp  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋  ∧  𝑧  ∈  𝑋 ) )  →  ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 7 | 6 | ralrimivvva | ⊢ ( 𝐺  ∈  NrmGrp  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) ) | 
						
							| 8 | 4 5 7 | 3jca | ⊢ ( 𝐺  ∈  NrmGrp  →  ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) ) ) | 
						
							| 9 |  | simp1 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) )  →  𝐺  ∈  Grp ) | 
						
							| 10 |  | simp2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) )  →  𝐺  ∈  MetSp ) | 
						
							| 11 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 12 | 1 11 | grpinvcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋 )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 13 | 12 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋 ) | 
						
							| 14 |  | eqcom | ⊢ ( ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  ↔  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑧  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( 𝑥  +  𝑧 )  =  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 16 |  | oveq2 | ⊢ ( 𝑧  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( 𝑦  +  𝑧 )  =  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 17 | 15 16 | oveq12d | ⊢ ( 𝑧  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) | 
						
							| 18 | 17 | eqeq2d | ⊢ ( 𝑧  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  ↔  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 19 | 14 18 | bitrid | ⊢ ( 𝑧  =  ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  →  ( ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  ↔  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 20 | 19 | rspcv | ⊢ ( ( ( invg ‘ 𝐺 ) ‘ 𝑦 )  ∈  𝑋  →  ( ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 21 | 13 20 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) ) ) | 
						
							| 22 |  | eqid | ⊢ ( -g ‘ 𝐺 )  =  ( -g ‘ 𝐺 ) | 
						
							| 23 | 1 2 11 22 | grpsubval | ⊢ ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  =  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) ) | 
						
							| 25 | 24 | eqcomd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) | 
						
							| 26 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 27 | 1 2 26 11 | grprinv | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑦  ∈  𝑋 )  →  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 28 | 27 | ad2ant2rl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) )  =  ( 0g ‘ 𝐺 ) ) | 
						
							| 29 | 25 28 | oveq12d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) )  =  ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 30 | 1 22 | grpsubcl | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 31 | 30 | 3expb | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 32 | 31 | adantlr | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  ∈  𝑋 ) | 
						
							| 33 |  | eqid | ⊢ ( norm ‘ 𝐺 )  =  ( norm ‘ 𝐺 ) | 
						
							| 34 | 33 1 26 3 | nmval | ⊢ ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 )  ∈  𝑋  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 35 | 32 34 | syl | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) )  =  ( ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) 𝐷 ( 0g ‘ 𝐺 ) ) ) | 
						
							| 36 | 29 35 | eqtr4d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 37 | 36 | eqeq2d | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ( 𝑥 𝐷 𝑦 )  =  ( ( 𝑥  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) 𝐷 ( 𝑦  +  ( ( invg ‘ 𝐺 ) ‘ 𝑦 ) ) )  ↔  ( 𝑥 𝐷 𝑦 )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) | 
						
							| 38 | 21 37 | sylibd | ⊢ ( ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  →  ( 𝑥 𝐷 𝑦 )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) | 
						
							| 39 | 38 | ralimdvva | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp )  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) | 
						
							| 40 | 39 | 3impia | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) )  →  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) | 
						
							| 41 | 33 22 3 1 | isngp3 | ⊢ ( 𝐺  ∈  NrmGrp  ↔  ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( 𝑥 𝐷 𝑦 )  =  ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) ) | 
						
							| 42 | 9 10 40 41 | syl3anbrc | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) )  →  𝐺  ∈  NrmGrp ) | 
						
							| 43 | 8 42 | impbii | ⊢ ( 𝐺  ∈  NrmGrp  ↔  ( 𝐺  ∈  Grp  ∧  𝐺  ∈  MetSp  ∧  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ∀ 𝑧  ∈  𝑋 ( ( 𝑥  +  𝑧 ) 𝐷 ( 𝑦  +  𝑧 ) )  =  ( 𝑥 𝐷 𝑦 ) ) ) |