| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itscnhlc0yqe.q | ⊢ 𝑄  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) | 
						
							| 2 |  | itscnhlc0yqe.t | ⊢ 𝑇  =  - ( 2  ·  ( 𝐵  ·  𝐶 ) ) | 
						
							| 3 |  | itscnhlc0yqe.u | ⊢ 𝑈  =  ( ( 𝐶 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 4 |  | itsclc0yqsollem1.d | ⊢ 𝐷  =  ( ( ( 𝑅 ↑ 2 )  ·  𝑄 )  −  ( 𝐶 ↑ 2 ) ) | 
						
							| 5 | 2 | oveq1i | ⊢ ( 𝑇 ↑ 2 )  =  ( - ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 ) | 
						
							| 6 |  | 2cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  2  ∈  ℂ ) | 
						
							| 7 |  | simpl2 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝐵  ∈  ℂ ) | 
						
							| 8 |  | simpl3 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 9 | 7 8 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝐵  ·  𝐶 )  ∈  ℂ ) | 
						
							| 10 | 6 9 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 2  ·  ( 𝐵  ·  𝐶 ) )  ∈  ℂ ) | 
						
							| 11 |  | sqneg | ⊢ ( ( 2  ·  ( 𝐵  ·  𝐶 ) )  ∈  ℂ  →  ( - ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 )  =  ( ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( - ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 )  =  ( ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 ) ) | 
						
							| 13 | 6 9 | sqmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 )  =  ( ( 2 ↑ 2 )  ·  ( ( 𝐵  ·  𝐶 ) ↑ 2 ) ) ) | 
						
							| 14 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 15 | 14 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 2 ↑ 2 )  =  4 ) | 
						
							| 16 | 7 8 | sqmuld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐵  ·  𝐶 ) ↑ 2 )  =  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 17 | 15 16 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 2 ↑ 2 )  ·  ( ( 𝐵  ·  𝐶 ) ↑ 2 ) )  =  ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 18 | 12 13 17 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( - ( 2  ·  ( 𝐵  ·  𝐶 ) ) ↑ 2 )  =  ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 19 | 5 18 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝑇 ↑ 2 )  =  ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 20 | 1 3 | oveq12i | ⊢ ( 𝑄  ·  𝑈 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐶 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 21 |  | simpl1 | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 22 | 21 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 23 | 7 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 24 | 22 23 | addcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 25 | 8 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝐶 ↑ 2 )  ∈  ℂ ) | 
						
							| 26 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝑅  ∈  ℂ ) | 
						
							| 27 | 26 | sqcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝑅 ↑ 2 )  ∈  ℂ ) | 
						
							| 28 | 22 27 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 29 | 24 25 28 | subdid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐶 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) | 
						
							| 30 | 22 23 25 | adddird | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝐶 ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 31 | 22 23 28 | adddird | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) | 
						
							| 32 | 30 31 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) | 
						
							| 33 | 23 25 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 34 | 22 25 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 35 | 22 28 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 36 | 23 27 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 37 | 22 36 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 38 | 35 37 | addcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 39 | 34 33 | addcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  =  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 40 | 23 22 27 | mul12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) | 
						
							| 42 | 39 41 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) )  =  ( ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) | 
						
							| 43 | 33 34 38 42 | assraddsubd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) )  =  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 44 | 29 32 43 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( ( 𝐶 ↑ 2 )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 45 | 20 44 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝑄  ·  𝑈 )  =  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 4  ·  ( 𝑄  ·  𝑈 ) )  =  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 47 | 19 46 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑇 ↑ 2 )  −  ( 4  ·  ( 𝑄  ·  𝑈 ) ) )  =  ( ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) ) | 
						
							| 48 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 49 | 48 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  4  ∈  ℂ ) | 
						
							| 50 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  ℂ ) | 
						
							| 51 | 50 | sqcld | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 53 | 1 24 | eqeltrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝑄  ∈  ℂ ) | 
						
							| 54 | 27 53 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑅 ↑ 2 )  ·  𝑄 )  ∈  ℂ ) | 
						
							| 55 | 54 25 | subcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝑅 ↑ 2 )  ·  𝑄 )  −  ( 𝐶 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 56 | 4 55 | eqeltrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝐷  ∈  ℂ ) | 
						
							| 57 | 49 52 56 | mulassd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 4  ·  ( 𝐴 ↑ 2 ) )  ·  𝐷 )  =  ( 4  ·  ( ( 𝐴 ↑ 2 )  ·  𝐷 ) ) ) | 
						
							| 58 | 34 38 | subcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) )  ∈  ℂ ) | 
						
							| 59 | 33 33 58 | subsub4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) )  =  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) | 
						
							| 60 | 33 | subidd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  =  0 ) | 
						
							| 61 | 60 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) )  =  ( 0  −  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 62 |  | 0cnd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  0  ∈  ℂ ) | 
						
							| 63 | 62 34 38 | subsub2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 0  −  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) )  =  ( 0  +  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) ) | 
						
							| 64 | 38 34 | subcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 65 | 64 | addlidd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 0  +  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 66 | 61 63 65 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 67 | 59 66 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) )  =  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 68 | 22 28 36 | adddid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) | 
						
							| 69 | 22 23 27 | adddird | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 70 | 69 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 71 | 70 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) )  +  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 72 | 68 71 | eqtr3d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 73 | 72 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 74 | 24 27 | mulcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 75 | 22 74 25 | subdid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  ·  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 76 | 73 75 | eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) )  −  ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) ) ) ) | 
						
							| 77 | 1 | a1i | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝑄  =  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 78 | 77 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑅 ↑ 2 )  ·  𝑄 )  =  ( ( 𝑅 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 79 | 27 24 | mulcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑅 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) ) )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 80 | 78 79 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑅 ↑ 2 )  ·  𝑄 )  =  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝑅 ↑ 2 )  ·  𝑄 )  −  ( 𝐶 ↑ 2 ) )  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 82 | 4 81 | eqtrid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  𝐷  =  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 83 | 82 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) )  =  𝐷 ) | 
						
							| 84 | 83 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝐴 ↑ 2 )  ·  ( ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  ·  ( 𝑅 ↑ 2 ) )  −  ( 𝐶 ↑ 2 ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  𝐷 ) ) | 
						
							| 85 | 67 76 84 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) )  =  ( ( 𝐴 ↑ 2 )  ·  𝐷 ) ) | 
						
							| 86 | 85 | oveq2d | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) )  =  ( 4  ·  ( ( 𝐴 ↑ 2 )  ·  𝐷 ) ) ) | 
						
							| 87 | 33 58 | addcld | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) )  ∈  ℂ ) | 
						
							| 88 | 49 33 87 | subdid | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) )  =  ( ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) ) ) | 
						
							| 89 | 57 86 88 | 3eqtr2rd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 4  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) ) )  −  ( 4  ·  ( ( ( 𝐵 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  +  ( ( ( 𝐴 ↑ 2 )  ·  ( 𝐶 ↑ 2 ) )  −  ( ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐴 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) )  +  ( ( 𝐴 ↑ 2 )  ·  ( ( 𝐵 ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) )  =  ( ( 4  ·  ( 𝐴 ↑ 2 ) )  ·  𝐷 ) ) | 
						
							| 90 | 47 89 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐶  ∈  ℂ )  ∧  𝑅  ∈  ℂ )  →  ( ( 𝑇 ↑ 2 )  −  ( 4  ·  ( 𝑄  ·  𝑈 ) ) )  =  ( ( 4  ·  ( 𝐴 ↑ 2 ) )  ·  𝐷 ) ) |