Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlinecirc02p.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
itscnhlinecirc02p.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
3 |
|
itscnhlinecirc02p.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
4 |
|
itscnhlinecirc02p.s |
⊢ 𝑆 = ( Sphere ‘ 𝐸 ) |
5 |
|
itscnhlinecirc02p.0 |
⊢ 0 = ( 𝐼 × { 0 } ) |
6 |
|
itscnhlinecirc02p.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
7 |
|
itscnhlinecirc02p.d |
⊢ 𝐷 = ( dist ‘ 𝐸 ) |
8 |
1 3
|
rrx2pxel |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
9 |
1 3
|
rrx2pyel |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
10 |
8 9
|
jca |
⊢ ( 𝑋 ∈ 𝑃 → ( ( 𝑋 ‘ 1 ) ∈ ℝ ∧ ( 𝑋 ‘ 2 ) ∈ ℝ ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) → ( ( 𝑋 ‘ 1 ) ∈ ℝ ∧ ( 𝑋 ‘ 2 ) ∈ ℝ ) ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( ( 𝑋 ‘ 1 ) ∈ ℝ ∧ ( 𝑋 ‘ 2 ) ∈ ℝ ) ) |
13 |
1 3
|
rrx2pxel |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
14 |
1 3
|
rrx2pyel |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
15 |
13 14
|
jca |
⊢ ( 𝑌 ∈ 𝑃 → ( ( 𝑌 ‘ 1 ) ∈ ℝ ∧ ( 𝑌 ‘ 2 ) ∈ ℝ ) ) |
16 |
15
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) → ( ( 𝑌 ‘ 1 ) ∈ ℝ ∧ ( 𝑌 ‘ 2 ) ∈ ℝ ) ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( ( 𝑌 ‘ 1 ) ∈ ℝ ∧ ( 𝑌 ‘ 2 ) ∈ ℝ ) ) |
18 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) |
19 |
|
rpre |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 ∈ ℝ ) |
20 |
19
|
adantr |
⊢ ( ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) → 𝑅 ∈ ℝ ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → 𝑅 ∈ ℝ ) |
22 |
|
simpl1 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑋 ∈ 𝑃 ) |
23 |
|
2nn0 |
⊢ 2 ∈ ℕ0 |
24 |
|
eqid |
⊢ ( 𝔼hil ‘ 2 ) = ( 𝔼hil ‘ 2 ) |
25 |
24
|
ehlval |
⊢ ( 2 ∈ ℕ0 → ( 𝔼hil ‘ 2 ) = ( ℝ^ ‘ ( 1 ... 2 ) ) ) |
26 |
23 25
|
ax-mp |
⊢ ( 𝔼hil ‘ 2 ) = ( ℝ^ ‘ ( 1 ... 2 ) ) |
27 |
|
fz12pr |
⊢ ( 1 ... 2 ) = { 1 , 2 } |
28 |
27 1
|
eqtr4i |
⊢ ( 1 ... 2 ) = 𝐼 |
29 |
28
|
fveq2i |
⊢ ( ℝ^ ‘ ( 1 ... 2 ) ) = ( ℝ^ ‘ 𝐼 ) |
30 |
26 29
|
eqtri |
⊢ ( 𝔼hil ‘ 2 ) = ( ℝ^ ‘ 𝐼 ) |
31 |
2 30
|
eqtr4i |
⊢ 𝐸 = ( 𝔼hil ‘ 2 ) |
32 |
1
|
oveq2i |
⊢ ( ℝ ↑m 𝐼 ) = ( ℝ ↑m { 1 , 2 } ) |
33 |
3 32
|
eqtri |
⊢ 𝑃 = ( ℝ ↑m { 1 , 2 } ) |
34 |
1
|
xpeq1i |
⊢ ( 𝐼 × { 0 } ) = ( { 1 , 2 } × { 0 } ) |
35 |
5 34
|
eqtri |
⊢ 0 = ( { 1 , 2 } × { 0 } ) |
36 |
31 33 7 35
|
ehl2eudisval0 |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 𝐷 0 ) = ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) ) |
37 |
22 36
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( 𝑋 𝐷 0 ) = ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) ) |
38 |
37
|
breq1d |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑋 𝐷 0 ) < 𝑅 ↔ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) ) |
39 |
|
rpge0 |
⊢ ( 𝑅 ∈ ℝ+ → 0 ≤ 𝑅 ) |
40 |
19 39
|
sqrtsqd |
⊢ ( 𝑅 ∈ ℝ+ → ( √ ‘ ( 𝑅 ↑ 2 ) ) = 𝑅 ) |
41 |
40
|
eqcomd |
⊢ ( 𝑅 ∈ ℝ+ → 𝑅 = ( √ ‘ ( 𝑅 ↑ 2 ) ) ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑅 = ( √ ‘ ( 𝑅 ↑ 2 ) ) ) |
43 |
42
|
breq2d |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ↔ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < ( √ ‘ ( 𝑅 ↑ 2 ) ) ) ) |
44 |
43
|
biimpa |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < ( √ ‘ ( 𝑅 ↑ 2 ) ) ) |
45 |
22 8
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
46 |
45
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
47 |
46
|
resqcld |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( ( 𝑋 ‘ 1 ) ↑ 2 ) ∈ ℝ ) |
48 |
22 9
|
syl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
50 |
49
|
resqcld |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( ( 𝑋 ‘ 2 ) ↑ 2 ) ∈ ℝ ) |
51 |
47 50
|
readdcld |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ∈ ℝ ) |
52 |
46
|
sqge0d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → 0 ≤ ( ( 𝑋 ‘ 1 ) ↑ 2 ) ) |
53 |
49
|
sqge0d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → 0 ≤ ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) |
54 |
47 50 52 53
|
addge0d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → 0 ≤ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) |
55 |
19
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → 𝑅 ∈ ℝ ) |
56 |
55
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → 𝑅 ∈ ℝ ) |
57 |
56
|
resqcld |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( 𝑅 ↑ 2 ) ∈ ℝ ) |
58 |
56
|
sqge0d |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → 0 ≤ ( 𝑅 ↑ 2 ) ) |
59 |
51 54 57 58
|
sqrtltd |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ↔ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < ( √ ‘ ( 𝑅 ↑ 2 ) ) ) ) |
60 |
44 59
|
mpbird |
⊢ ( ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) ∧ ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 ) → ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
61 |
60
|
ex |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) < 𝑅 → ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |
62 |
38 61
|
sylbid |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ 𝑅 ∈ ℝ+ ) → ( ( 𝑋 𝐷 0 ) < 𝑅 → ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) |
63 |
62
|
impr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) |
64 |
|
eqid |
⊢ ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) |
65 |
|
eqid |
⊢ ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) = ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) |
66 |
|
eqid |
⊢ ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) |
67 |
64 65 66
|
itscnhlinecirc02plem2 |
⊢ ( ( ( ( ( 𝑋 ‘ 1 ) ∈ ℝ ∧ ( 𝑋 ‘ 2 ) ∈ ℝ ) ∧ ( ( 𝑌 ‘ 1 ) ∈ ℝ ∧ ( 𝑌 ‘ 2 ) ∈ ℝ ) ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ ∧ ( ( ( 𝑋 ‘ 1 ) ↑ 2 ) + ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) < ( 𝑅 ↑ 2 ) ) ) → 0 < ( ( - ( 2 · ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↑ 2 ) − ( 4 · ( ( ( ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) ↑ 2 ) + ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ↑ 2 ) ) · ( ( ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ↑ 2 ) − ( ( ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |
68 |
12 17 18 21 63 67
|
syl32anc |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ∧ ( 𝑅 ∈ ℝ+ ∧ ( 𝑋 𝐷 0 ) < 𝑅 ) ) → 0 < ( ( - ( 2 · ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↑ 2 ) − ( 4 · ( ( ( ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) ↑ 2 ) + ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ↑ 2 ) ) · ( ( ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ↑ 2 ) − ( ( ( ( 𝑋 ‘ 2 ) − ( 𝑌 ‘ 2 ) ) ↑ 2 ) · ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |