| Step | Hyp | Ref | Expression | 
						
							| 1 |  | itscnhlinecirc02p.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | itscnhlinecirc02p.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | itscnhlinecirc02p.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | itscnhlinecirc02p.s | ⊢ 𝑆  =  ( Sphere ‘ 𝐸 ) | 
						
							| 5 |  | itscnhlinecirc02p.0 | ⊢  0   =  ( 𝐼  ×  { 0 } ) | 
						
							| 6 |  | itscnhlinecirc02p.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 7 |  | itscnhlinecirc02p.d | ⊢ 𝐷  =  ( dist ‘ 𝐸 ) | 
						
							| 8 | 1 3 | rrx2pxel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 9 | 1 3 | rrx2pyel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 10 | 8 9 | jca | ⊢ ( 𝑋  ∈  𝑃  →  ( ( 𝑋 ‘ 1 )  ∈  ℝ  ∧  ( 𝑋 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 11 | 10 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  →  ( ( 𝑋 ‘ 1 )  ∈  ℝ  ∧  ( 𝑋 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  ( ( 𝑋 ‘ 1 )  ∈  ℝ  ∧  ( 𝑋 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 13 | 1 3 | rrx2pxel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 14 | 1 3 | rrx2pyel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 15 | 13 14 | jca | ⊢ ( 𝑌  ∈  𝑃  →  ( ( 𝑌 ‘ 1 )  ∈  ℝ  ∧  ( 𝑌 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 16 | 15 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  →  ( ( 𝑌 ‘ 1 )  ∈  ℝ  ∧  ( 𝑌 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 17 | 16 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  ( ( 𝑌 ‘ 1 )  ∈  ℝ  ∧  ( 𝑌 ‘ 2 )  ∈  ℝ ) ) | 
						
							| 18 |  | simpl3 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) | 
						
							| 19 |  | rpre | ⊢ ( 𝑅  ∈  ℝ+  →  𝑅  ∈  ℝ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 )  →  𝑅  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  𝑅  ∈  ℝ ) | 
						
							| 22 |  | simpl1 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  𝑋  ∈  𝑃 ) | 
						
							| 23 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 24 |  | eqid | ⊢ ( 𝔼hil ‘ 2 )  =  ( 𝔼hil ‘ 2 ) | 
						
							| 25 | 24 | ehlval | ⊢ ( 2  ∈  ℕ0  →  ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ ( 1 ... 2 ) ) ) | 
						
							| 26 | 23 25 | ax-mp | ⊢ ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ ( 1 ... 2 ) ) | 
						
							| 27 |  | fz12pr | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 28 | 27 1 | eqtr4i | ⊢ ( 1 ... 2 )  =  𝐼 | 
						
							| 29 | 28 | fveq2i | ⊢ ( ℝ^ ‘ ( 1 ... 2 ) )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 30 | 26 29 | eqtri | ⊢ ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 31 | 2 30 | eqtr4i | ⊢ 𝐸  =  ( 𝔼hil ‘ 2 ) | 
						
							| 32 | 1 | oveq2i | ⊢ ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 33 | 3 32 | eqtri | ⊢ 𝑃  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 34 | 1 | xpeq1i | ⊢ ( 𝐼  ×  { 0 } )  =  ( { 1 ,  2 }  ×  { 0 } ) | 
						
							| 35 | 5 34 | eqtri | ⊢  0   =  ( { 1 ,  2 }  ×  { 0 } ) | 
						
							| 36 | 31 33 7 35 | ehl2eudisval0 | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 𝐷  0  )  =  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) ) | 
						
							| 37 | 22 36 | syl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑋 𝐷  0  )  =  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) ) | 
						
							| 38 | 37 | breq1d | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( ( 𝑋 𝐷  0  )  <  𝑅  ↔  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 ) ) | 
						
							| 39 |  | rpge0 | ⊢ ( 𝑅  ∈  ℝ+  →  0  ≤  𝑅 ) | 
						
							| 40 | 19 39 | sqrtsqd | ⊢ ( 𝑅  ∈  ℝ+  →  ( √ ‘ ( 𝑅 ↑ 2 ) )  =  𝑅 ) | 
						
							| 41 | 40 | eqcomd | ⊢ ( 𝑅  ∈  ℝ+  →  𝑅  =  ( √ ‘ ( 𝑅 ↑ 2 ) ) ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  𝑅  =  ( √ ‘ ( 𝑅 ↑ 2 ) ) ) | 
						
							| 43 | 42 | breq2d | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅  ↔  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  ( √ ‘ ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  ( √ ‘ ( 𝑅 ↑ 2 ) ) ) | 
						
							| 45 | 22 8 | syl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 47 | 46 | resqcld | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( ( 𝑋 ‘ 1 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 48 | 22 9 | syl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 50 | 49 | resqcld | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( ( 𝑋 ‘ 2 ) ↑ 2 )  ∈  ℝ ) | 
						
							| 51 | 47 50 | readdcld | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 52 | 46 | sqge0d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  0  ≤  ( ( 𝑋 ‘ 1 ) ↑ 2 ) ) | 
						
							| 53 | 49 | sqge0d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  0  ≤  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) | 
						
							| 54 | 47 50 52 53 | addge0d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  0  ≤  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) ) | 
						
							| 55 | 19 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  𝑅  ∈  ℝ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  𝑅  ∈  ℝ ) | 
						
							| 57 | 56 | resqcld | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( 𝑅 ↑ 2 )  ∈  ℝ ) | 
						
							| 58 | 56 | sqge0d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  0  ≤  ( 𝑅 ↑ 2 ) ) | 
						
							| 59 | 51 54 57 58 | sqrtltd | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 )  ↔  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  ( √ ‘ ( 𝑅 ↑ 2 ) ) ) ) | 
						
							| 60 | 44 59 | mpbird | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  ∧  ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅 )  →  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 ) ) | 
						
							| 61 | 60 | ex | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( ( √ ‘ ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) ) )  <  𝑅  →  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 62 | 38 61 | sylbid | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  𝑅  ∈  ℝ+ )  →  ( ( 𝑋 𝐷  0  )  <  𝑅  →  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 63 | 62 | impr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 ) ) | 
						
							| 64 |  | eqid | ⊢ ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) | 
						
							| 65 |  | eqid | ⊢ ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) | 
						
							| 66 |  | eqid | ⊢ ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 67 | 64 65 66 | itscnhlinecirc02plem2 | ⊢ ( ( ( ( ( 𝑋 ‘ 1 )  ∈  ℝ  ∧  ( 𝑋 ‘ 2 )  ∈  ℝ )  ∧  ( ( 𝑌 ‘ 1 )  ∈  ℝ  ∧  ( 𝑌 ‘ 2 )  ∈  ℝ )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ  ∧  ( ( ( 𝑋 ‘ 1 ) ↑ 2 )  +  ( ( 𝑋 ‘ 2 ) ↑ 2 ) )  <  ( 𝑅 ↑ 2 ) ) )  →  0  <  ( ( - ( 2  ·  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ↑ 2 )  −  ( 4  ·  ( ( ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) ↑ 2 )  +  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) ↑ 2 ) )  ·  ( ( ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ↑ 2 )  −  ( ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) | 
						
							| 68 | 12 17 18 21 63 67 | syl32anc | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) )  ∧  ( 𝑅  ∈  ℝ+  ∧  ( 𝑋 𝐷  0  )  <  𝑅 ) )  →  0  <  ( ( - ( 2  ·  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ↑ 2 )  −  ( 4  ·  ( ( ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) ↑ 2 )  +  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) ↑ 2 ) )  ·  ( ( ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ↑ 2 )  −  ( ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) ) ↑ 2 )  ·  ( 𝑅 ↑ 2 ) ) ) ) ) ) ) |