Metamath Proof Explorer


Theorem itscnhlinecirc02plem3

Description: Lemma 3 for itscnhlinecirc02p . (Contributed by AV, 10-Mar-2023)

Ref Expression
Hypotheses itscnhlinecirc02p.i I=12
itscnhlinecirc02p.e E=msup
itscnhlinecirc02p.p P=I
itscnhlinecirc02p.s S=SphereE
itscnhlinecirc02p.0 0˙=I×0
itscnhlinecirc02p.l L=LineME
itscnhlinecirc02p.d D=distE
Assertion itscnhlinecirc02plem3 XPYPX2Y2R+XD0˙<R0<2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2

Proof

Step Hyp Ref Expression
1 itscnhlinecirc02p.i I=12
2 itscnhlinecirc02p.e E=msup
3 itscnhlinecirc02p.p P=I
4 itscnhlinecirc02p.s S=SphereE
5 itscnhlinecirc02p.0 0˙=I×0
6 itscnhlinecirc02p.l L=LineME
7 itscnhlinecirc02p.d D=distE
8 1 3 rrx2pxel XPX1
9 1 3 rrx2pyel XPX2
10 8 9 jca XPX1X2
11 10 3ad2ant1 XPYPX2Y2X1X2
12 11 adantr XPYPX2Y2R+XD0˙<RX1X2
13 1 3 rrx2pxel YPY1
14 1 3 rrx2pyel YPY2
15 13 14 jca YPY1Y2
16 15 3ad2ant2 XPYPX2Y2Y1Y2
17 16 adantr XPYPX2Y2R+XD0˙<RY1Y2
18 simpl3 XPYPX2Y2R+XD0˙<RX2Y2
19 rpre R+R
20 19 adantr R+XD0˙<RR
21 20 adantl XPYPX2Y2R+XD0˙<RR
22 simpl1 XPYPX2Y2R+XP
23 2nn0 20
24 eqid 𝔼hil2=𝔼hil2
25 24 ehlval 20𝔼hil2=msup
26 23 25 ax-mp 𝔼hil2=msup
27 fz12pr 12=12
28 27 1 eqtr4i 12=I
29 28 fveq2i msup=msup
30 26 29 eqtri 𝔼hil2=msup
31 2 30 eqtr4i E=𝔼hil2
32 1 oveq2i I=12
33 3 32 eqtri P=12
34 1 xpeq1i I×0=12×0
35 5 34 eqtri 0˙=12×0
36 31 33 7 35 ehl2eudisval0 XPXD0˙=X12+X22
37 22 36 syl XPYPX2Y2R+XD0˙=X12+X22
38 37 breq1d XPYPX2Y2R+XD0˙<RX12+X22<R
39 rpge0 R+0R
40 19 39 sqrtsqd R+R2=R
41 40 eqcomd R+R=R2
42 41 adantl XPYPX2Y2R+R=R2
43 42 breq2d XPYPX2Y2R+X12+X22<RX12+X22<R2
44 43 biimpa XPYPX2Y2R+X12+X22<RX12+X22<R2
45 22 8 syl XPYPX2Y2R+X1
46 45 adantr XPYPX2Y2R+X12+X22<RX1
47 46 resqcld XPYPX2Y2R+X12+X22<RX12
48 22 9 syl XPYPX2Y2R+X2
49 48 adantr XPYPX2Y2R+X12+X22<RX2
50 49 resqcld XPYPX2Y2R+X12+X22<RX22
51 47 50 readdcld XPYPX2Y2R+X12+X22<RX12+X22
52 46 sqge0d XPYPX2Y2R+X12+X22<R0X12
53 49 sqge0d XPYPX2Y2R+X12+X22<R0X22
54 47 50 52 53 addge0d XPYPX2Y2R+X12+X22<R0X12+X22
55 19 adantl XPYPX2Y2R+R
56 55 adantr XPYPX2Y2R+X12+X22<RR
57 56 resqcld XPYPX2Y2R+X12+X22<RR2
58 56 sqge0d XPYPX2Y2R+X12+X22<R0R2
59 51 54 57 58 sqrtltd XPYPX2Y2R+X12+X22<RX12+X22<R2X12+X22<R2
60 44 59 mpbird XPYPX2Y2R+X12+X22<RX12+X22<R2
61 60 ex XPYPX2Y2R+X12+X22<RX12+X22<R2
62 38 61 sylbid XPYPX2Y2R+XD0˙<RX12+X22<R2
63 62 impr XPYPX2Y2R+XD0˙<RX12+X22<R2
64 eqid Y1X1=Y1X1
65 eqid X2Y2=X2Y2
66 eqid X2Y1X1Y2=X2Y1X1Y2
67 64 65 66 itscnhlinecirc02plem2 X1X2Y1Y2X2Y2RX12+X22<R20<2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2
68 12 17 18 21 63 67 syl32anc XPYPX2Y2R+XD0˙<R0<2Y1X1X2Y1X1Y224X2Y22+Y1X12X2Y1X1Y22X2Y22R2