Step |
Hyp |
Ref |
Expression |
1 |
|
itscnhlinecirc02p.i |
|
2 |
|
itscnhlinecirc02p.e |
|
3 |
|
itscnhlinecirc02p.p |
|
4 |
|
itscnhlinecirc02p.s |
|
5 |
|
itscnhlinecirc02p.0 |
|
6 |
|
itscnhlinecirc02p.l |
|
7 |
|
itscnhlinecirc02p.d |
|
8 |
1 3
|
rrx2pxel |
|
9 |
1 3
|
rrx2pyel |
|
10 |
8 9
|
jca |
|
11 |
10
|
3ad2ant1 |
|
12 |
11
|
adantr |
|
13 |
1 3
|
rrx2pxel |
|
14 |
1 3
|
rrx2pyel |
|
15 |
13 14
|
jca |
|
16 |
15
|
3ad2ant2 |
|
17 |
16
|
adantr |
|
18 |
|
simpl3 |
|
19 |
|
rpre |
|
20 |
19
|
adantr |
|
21 |
20
|
adantl |
|
22 |
|
simpl1 |
|
23 |
|
2nn0 |
|
24 |
|
eqid |
|
25 |
24
|
ehlval |
|
26 |
23 25
|
ax-mp |
|
27 |
|
fz12pr |
|
28 |
27 1
|
eqtr4i |
|
29 |
28
|
fveq2i |
|
30 |
26 29
|
eqtri |
|
31 |
2 30
|
eqtr4i |
|
32 |
1
|
oveq2i |
|
33 |
3 32
|
eqtri |
|
34 |
1
|
xpeq1i |
|
35 |
5 34
|
eqtri |
|
36 |
31 33 7 35
|
ehl2eudisval0 |
|
37 |
22 36
|
syl |
|
38 |
37
|
breq1d |
|
39 |
|
rpge0 |
|
40 |
19 39
|
sqrtsqd |
|
41 |
40
|
eqcomd |
|
42 |
41
|
adantl |
|
43 |
42
|
breq2d |
|
44 |
43
|
biimpa |
|
45 |
22 8
|
syl |
|
46 |
45
|
adantr |
|
47 |
46
|
resqcld |
|
48 |
22 9
|
syl |
|
49 |
48
|
adantr |
|
50 |
49
|
resqcld |
|
51 |
47 50
|
readdcld |
|
52 |
46
|
sqge0d |
|
53 |
49
|
sqge0d |
|
54 |
47 50 52 53
|
addge0d |
|
55 |
19
|
adantl |
|
56 |
55
|
adantr |
|
57 |
56
|
resqcld |
|
58 |
56
|
sqge0d |
|
59 |
51 54 57 58
|
sqrtltd |
|
60 |
44 59
|
mpbird |
|
61 |
60
|
ex |
|
62 |
38 61
|
sylbid |
|
63 |
62
|
impr |
|
64 |
|
eqid |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
64 65 66
|
itscnhlinecirc02plem2 |
|
68 |
12 17 18 21 63 67
|
syl32anc |
|