Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝐴 ∈ ℤ ) |
2 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℤ ) |
4 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ≠ 0 ) |
6 |
|
lgsdi |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑁 ≠ 0 ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 /L ( 𝑁 · 𝑁 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 𝑁 ) ) ) |
7 |
1 3 3 5 5 6
|
syl32anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L ( 𝑁 · 𝑁 ) ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 𝑁 ) ) ) |
8 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℂ ) |
10 |
9
|
sqvald |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L ( 𝑁 ↑ 2 ) ) = ( 𝐴 /L ( 𝑁 · 𝑁 ) ) ) |
12 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
13 |
1 3 12
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
14 |
13
|
zred |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L 𝑁 ) ∈ ℝ ) |
15 |
|
absresq |
⊢ ( ( 𝐴 /L 𝑁 ) ∈ ℝ → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↑ 2 ) = ( ( 𝐴 /L 𝑁 ) ↑ 2 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↑ 2 ) = ( ( 𝐴 /L 𝑁 ) ↑ 2 ) ) |
17 |
|
lgsabs1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
18 |
2 17
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
19 |
18
|
biimp3ar |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ) |
20 |
19
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
21 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
22 |
20 21
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↑ 2 ) = 1 ) |
23 |
13
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L 𝑁 ) ∈ ℂ ) |
24 |
23
|
sqvald |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( ( 𝐴 /L 𝑁 ) ↑ 2 ) = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 𝑁 ) ) ) |
25 |
16 22 24
|
3eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → 1 = ( ( 𝐴 /L 𝑁 ) · ( 𝐴 /L 𝑁 ) ) ) |
26 |
7 11 25
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝐴 gcd 𝑁 ) = 1 ) → ( 𝐴 /L ( 𝑁 ↑ 2 ) ) = 1 ) |