| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℤ ) |
| 2 |
1
|
zcnd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) ∈ ℂ ) |
| 3 |
2
|
abscld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℝ ) |
| 4 |
|
1re |
⊢ 1 ∈ ℝ |
| 5 |
|
letri3 |
⊢ ( ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ↔ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ∧ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) ) |
| 6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ↔ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ∧ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) ) |
| 7 |
|
lgsle1 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ) |
| 8 |
7
|
biantrurd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↔ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≤ 1 ∧ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) ) |
| 9 |
|
nnne0 |
⊢ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 ) |
| 10 |
|
nn0abscl |
⊢ ( ( 𝐴 /L 𝑁 ) ∈ ℤ → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ0 ) |
| 11 |
1 10
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ0 ) |
| 12 |
|
elnn0 |
⊢ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ0 ↔ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ∨ ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 0 ) ) |
| 13 |
11 12
|
sylib |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ∨ ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 0 ) ) |
| 14 |
13
|
ord |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ → ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 0 ) ) |
| 15 |
14
|
necon1ad |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 → ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ) ) |
| 16 |
9 15
|
impbid2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ↔ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 ) ) |
| 17 |
|
elnnnn0c |
⊢ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ↔ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ0 ∧ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) |
| 18 |
17
|
baib |
⊢ ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ0 → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ↔ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) |
| 19 |
11 18
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ∈ ℕ ↔ 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ) ) |
| 20 |
|
abs00 |
⊢ ( ( 𝐴 /L 𝑁 ) ∈ ℂ → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 0 ↔ ( 𝐴 /L 𝑁 ) = 0 ) ) |
| 21 |
20
|
necon3bid |
⊢ ( ( 𝐴 /L 𝑁 ) ∈ ℂ → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 ↔ ( 𝐴 /L 𝑁 ) ≠ 0 ) ) |
| 22 |
2 21
|
syl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 ↔ ( 𝐴 /L 𝑁 ) ≠ 0 ) ) |
| 23 |
|
lgsne0 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐴 /L 𝑁 ) ≠ 0 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 24 |
22 23
|
bitrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) ≠ 0 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 25 |
16 19 24
|
3bitr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1 ≤ ( abs ‘ ( 𝐴 /L 𝑁 ) ) ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |
| 26 |
6 8 25
|
3bitr2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( abs ‘ ( 𝐴 /L 𝑁 ) ) = 1 ↔ ( 𝐴 gcd 𝑁 ) = 1 ) ) |