| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhp2at0nle.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 2 |
|
lhp2at0nle.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 3 |
|
lhp2at0nle.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
| 4 |
|
lhp2at0nle.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 5 |
|
lhp2at0nle.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
| 6 |
|
simpl1 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ∈ 𝐴 ) → ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ) |
| 7 |
|
simpr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ∈ 𝐴 ) |
| 8 |
|
simpl2r |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ∈ 𝐴 ) → 𝑈 ≤ 𝑊 ) |
| 9 |
|
simpl3 |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ∈ 𝐴 ) → ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) |
| 10 |
1 2 4 5
|
lhp2atnle |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( 𝑈 ∈ 𝐴 ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
| 11 |
6 7 8 9 10
|
syl121anc |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 ∈ 𝐴 ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
| 12 |
|
simp3r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ≤ 𝑊 ) |
| 13 |
|
simp12r |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑃 ≤ 𝑊 ) |
| 14 |
|
nbrne2 |
⊢ ( ( 𝑉 ≤ 𝑊 ∧ ¬ 𝑃 ≤ 𝑊 ) → 𝑉 ≠ 𝑃 ) |
| 15 |
12 13 14
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ≠ 𝑃 ) |
| 16 |
15
|
neneqd |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 = 𝑃 ) |
| 17 |
|
simp11l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ HL ) |
| 18 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 19 |
17 18
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ AtLat ) |
| 20 |
|
simp3l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑉 ∈ 𝐴 ) |
| 21 |
|
simp12l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑃 ∈ 𝐴 ) |
| 22 |
1 4
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑉 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ) → ( 𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃 ) ) |
| 23 |
19 20 21 22
|
syl3anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑉 ≤ 𝑃 ↔ 𝑉 = 𝑃 ) ) |
| 24 |
16 23
|
mtbird |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 ≤ 𝑃 ) |
| 25 |
24
|
adantr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ 𝑃 ) |
| 26 |
|
oveq2 |
⊢ ( 𝑈 = 0 → ( 𝑃 ∨ 𝑈 ) = ( 𝑃 ∨ 0 ) ) |
| 27 |
|
hlol |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ OL ) |
| 28 |
17 27
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝐾 ∈ OL ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
| 30 |
29 4
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 31 |
21 30
|
syl |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 32 |
29 2 3
|
olj01 |
⊢ ( ( 𝐾 ∈ OL ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 0 ) = 𝑃 ) |
| 33 |
28 31 32
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑃 ∨ 0 ) = 𝑃 ) |
| 34 |
26 33
|
sylan9eqr |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 = 0 ) → ( 𝑃 ∨ 𝑈 ) = 𝑃 ) |
| 35 |
34
|
breq2d |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 = 0 ) → ( 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ↔ 𝑉 ≤ 𝑃 ) ) |
| 36 |
25 35
|
mtbird |
⊢ ( ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) ∧ 𝑈 = 0 ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |
| 37 |
|
simp2l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ) |
| 38 |
11 36 37
|
mpjaodan |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ 𝑈 ≠ 𝑉 ) ∧ ( ( 𝑈 ∈ 𝐴 ∨ 𝑈 = 0 ) ∧ 𝑈 ≤ 𝑊 ) ∧ ( 𝑉 ∈ 𝐴 ∧ 𝑉 ≤ 𝑊 ) ) → ¬ 𝑉 ≤ ( 𝑃 ∨ 𝑈 ) ) |