Metamath Proof Explorer


Theorem lhpm0atN

Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpm0at.b 𝐵 = ( Base ‘ 𝐾 )
lhpm0at.m = ( meet ‘ 𝐾 )
lhpm0at.o 0 = ( 0. ‘ 𝐾 )
lhpm0at.a 𝐴 = ( Atoms ‘ 𝐾 )
lhpm0at.h 𝐻 = ( LHyp ‘ 𝐾 )
Assertion lhpm0atN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝑋𝐴 )

Proof

Step Hyp Ref Expression
1 lhpm0at.b 𝐵 = ( Base ‘ 𝐾 )
2 lhpm0at.m = ( meet ‘ 𝐾 )
3 lhpm0at.o 0 = ( 0. ‘ 𝐾 )
4 lhpm0at.a 𝐴 = ( Atoms ‘ 𝐾 )
5 lhpm0at.h 𝐻 = ( LHyp ‘ 𝐾 )
6 simpr3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋 𝑊 ) = 0 )
7 simpl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
8 simpr1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝑋𝐵 )
9 simpr2 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝑋0 )
10 hllat ( 𝐾 ∈ HL → 𝐾 ∈ Lat )
11 10 ad2antrr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝐾 ∈ Lat )
12 1 5 lhpbase ( 𝑊𝐻𝑊𝐵 )
13 12 ad2antlr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝑊𝐵 )
14 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
15 1 14 2 latleeqm1 ( ( 𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 𝑊 ) = 𝑋 ) )
16 11 8 13 15 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 𝑊 ) = 𝑋 ) )
17 16 biimpa ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝑋 𝑊 ) = 𝑋 )
18 simplr3 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝑋 𝑊 ) = 0 )
19 17 18 eqtr3d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → 𝑋 = 0 )
20 19 ex ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊𝑋 = 0 ) )
21 20 necon3ad ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋0 → ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) )
22 9 21 mpd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 )
23 eqid ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 )
24 1 14 2 23 5 lhpmcvr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵 ∧ ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑋 𝑊 ) ( ⋖ ‘ 𝐾 ) 𝑋 )
25 7 8 22 24 syl12anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋 𝑊 ) ( ⋖ ‘ 𝐾 ) 𝑋 )
26 6 25 eqbrtrrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 0 ( ⋖ ‘ 𝐾 ) 𝑋 )
27 simpll ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝐾 ∈ HL )
28 1 3 23 4 isat2 ( ( 𝐾 ∈ HL ∧ 𝑋𝐵 ) → ( 𝑋𝐴0 ( ⋖ ‘ 𝐾 ) 𝑋 ) )
29 27 8 28 syl2anc ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → ( 𝑋𝐴0 ( ⋖ ‘ 𝐾 ) 𝑋 ) )
30 26 29 mpbird ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑋𝐵𝑋0 ∧ ( 𝑋 𝑊 ) = 0 ) ) → 𝑋𝐴 )