Step |
Hyp |
Ref |
Expression |
1 |
|
lhpm0at.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
lhpm0at.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
lhpm0at.o |
⊢ 0 = ( 0. ‘ 𝐾 ) |
4 |
|
lhpm0at.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
lhpm0at.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
6 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ∧ 𝑊 ) = 0 ) |
7 |
|
simpl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ) |
8 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝑋 ∈ 𝐵 ) |
9 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝑋 ≠ 0 ) |
10 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝐾 ∈ Lat ) |
12 |
1 5
|
lhpbase |
⊢ ( 𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵 ) |
13 |
12
|
ad2antlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝑊 ∈ 𝐵 ) |
14 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
15 |
1 14 2
|
latleeqm1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵 ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 ∧ 𝑊 ) = 𝑋 ) ) |
16 |
11 8 13 15
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 ↔ ( 𝑋 ∧ 𝑊 ) = 𝑋 ) ) |
17 |
16
|
biimpa |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝑋 ∧ 𝑊 ) = 𝑋 ) |
18 |
|
simplr3 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → ( 𝑋 ∧ 𝑊 ) = 0 ) |
19 |
17 18
|
eqtr3d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) ∧ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) → 𝑋 = 0 ) |
20 |
19
|
ex |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ( le ‘ 𝐾 ) 𝑊 → 𝑋 = 0 ) ) |
21 |
20
|
necon3ad |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ≠ 0 → ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) |
22 |
9 21
|
mpd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) |
23 |
|
eqid |
⊢ ( ⋖ ‘ 𝐾 ) = ( ⋖ ‘ 𝐾 ) |
24 |
1 14 2 23 5
|
lhpmcvr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ( le ‘ 𝐾 ) 𝑊 ) ) → ( 𝑋 ∧ 𝑊 ) ( ⋖ ‘ 𝐾 ) 𝑋 ) |
25 |
7 8 22 24
|
syl12anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ∧ 𝑊 ) ( ⋖ ‘ 𝐾 ) 𝑋 ) |
26 |
6 25
|
eqbrtrrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 0 ( ⋖ ‘ 𝐾 ) 𝑋 ) |
27 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝐾 ∈ HL ) |
28 |
1 3 23 4
|
isat2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ 𝐴 ↔ 0 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) |
29 |
27 8 28
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → ( 𝑋 ∈ 𝐴 ↔ 0 ( ⋖ ‘ 𝐾 ) 𝑋 ) ) |
30 |
26 29
|
mpbird |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ∧ ( 𝑋 ∧ 𝑊 ) = 0 ) ) → 𝑋 ∈ 𝐴 ) |