Metamath Proof Explorer


Theorem lhpm0atN

Description: If the meet of a lattice hyperplane with a nonzero element is zero, the element is an atom. (Contributed by NM, 28-Apr-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lhpm0at.b B = Base K
lhpm0at.m ˙ = meet K
lhpm0at.o 0 ˙ = 0. K
lhpm0at.a A = Atoms K
lhpm0at.h H = LHyp K
Assertion lhpm0atN K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X A

Proof

Step Hyp Ref Expression
1 lhpm0at.b B = Base K
2 lhpm0at.m ˙ = meet K
3 lhpm0at.o 0 ˙ = 0. K
4 lhpm0at.a A = Atoms K
5 lhpm0at.h H = LHyp K
6 simpr3 K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X ˙ W = 0 ˙
7 simpl K HL W H X B X 0 ˙ X ˙ W = 0 ˙ K HL W H
8 simpr1 K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X B
9 simpr2 K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X 0 ˙
10 hllat K HL K Lat
11 10 ad2antrr K HL W H X B X 0 ˙ X ˙ W = 0 ˙ K Lat
12 1 5 lhpbase W H W B
13 12 ad2antlr K HL W H X B X 0 ˙ X ˙ W = 0 ˙ W B
14 eqid K = K
15 1 14 2 latleeqm1 K Lat X B W B X K W X ˙ W = X
16 11 8 13 15 syl3anc K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X K W X ˙ W = X
17 16 biimpa K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X K W X ˙ W = X
18 simplr3 K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X K W X ˙ W = 0 ˙
19 17 18 eqtr3d K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X K W X = 0 ˙
20 19 ex K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X K W X = 0 ˙
21 20 necon3ad K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X 0 ˙ ¬ X K W
22 9 21 mpd K HL W H X B X 0 ˙ X ˙ W = 0 ˙ ¬ X K W
23 eqid K = K
24 1 14 2 23 5 lhpmcvr K HL W H X B ¬ X K W X ˙ W K X
25 7 8 22 24 syl12anc K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X ˙ W K X
26 6 25 eqbrtrrd K HL W H X B X 0 ˙ X ˙ W = 0 ˙ 0 ˙ K X
27 simpll K HL W H X B X 0 ˙ X ˙ W = 0 ˙ K HL
28 1 3 23 4 isat2 K HL X B X A 0 ˙ K X
29 27 8 28 syl2anc K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X A 0 ˙ K X
30 26 29 mpbird K HL W H X B X 0 ˙ X ˙ W = 0 ˙ X A