| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lhpm0at.b |
|- B = ( Base ` K ) |
| 2 |
|
lhpm0at.m |
|- ./\ = ( meet ` K ) |
| 3 |
|
lhpm0at.o |
|- .0. = ( 0. ` K ) |
| 4 |
|
lhpm0at.a |
|- A = ( Atoms ` K ) |
| 5 |
|
lhpm0at.h |
|- H = ( LHyp ` K ) |
| 6 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X ./\ W ) = .0. ) |
| 7 |
|
simpl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( K e. HL /\ W e. H ) ) |
| 8 |
|
simpr1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> X e. B ) |
| 9 |
|
simpr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> X =/= .0. ) |
| 10 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
| 11 |
10
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> K e. Lat ) |
| 12 |
1 5
|
lhpbase |
|- ( W e. H -> W e. B ) |
| 13 |
12
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> W e. B ) |
| 14 |
|
eqid |
|- ( le ` K ) = ( le ` K ) |
| 15 |
1 14 2
|
latleeqm1 |
|- ( ( K e. Lat /\ X e. B /\ W e. B ) -> ( X ( le ` K ) W <-> ( X ./\ W ) = X ) ) |
| 16 |
11 8 13 15
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X ( le ` K ) W <-> ( X ./\ W ) = X ) ) |
| 17 |
16
|
biimpa |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) /\ X ( le ` K ) W ) -> ( X ./\ W ) = X ) |
| 18 |
|
simplr3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) /\ X ( le ` K ) W ) -> ( X ./\ W ) = .0. ) |
| 19 |
17 18
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) /\ X ( le ` K ) W ) -> X = .0. ) |
| 20 |
19
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X ( le ` K ) W -> X = .0. ) ) |
| 21 |
20
|
necon3ad |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X =/= .0. -> -. X ( le ` K ) W ) ) |
| 22 |
9 21
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> -. X ( le ` K ) W ) |
| 23 |
|
eqid |
|- ( |
| 24 |
1 14 2 23 5
|
lhpmcvr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X ( le ` K ) W ) ) -> ( X ./\ W ) ( |
| 25 |
7 8 22 24
|
syl12anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X ./\ W ) ( |
| 26 |
6 25
|
eqbrtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> .0. ( |
| 27 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> K e. HL ) |
| 28 |
1 3 23 4
|
isat2 |
|- ( ( K e. HL /\ X e. B ) -> ( X e. A <-> .0. ( |
| 29 |
27 8 28
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> ( X e. A <-> .0. ( |
| 30 |
26 29
|
mpbird |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ X =/= .0. /\ ( X ./\ W ) = .0. ) ) -> X e. A ) |