| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lspabs2.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
lspabs2.p |
⊢ + = ( +g ‘ 𝑊 ) |
| 3 |
|
lspabs2.o |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 4 |
|
lspabs2.n |
⊢ 𝑁 = ( LSpan ‘ 𝑊 ) |
| 5 |
|
lspabs2.w |
⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 6 |
|
lspabs2.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 7 |
|
lspabs3.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 8 |
|
lspabs3.xy |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ≠ 0 ) |
| 9 |
|
lspabs3.e |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { 𝑌 } ) ) |
| 10 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 11 |
|
lveclmod |
⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) |
| 12 |
5 11
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 13 |
1 10 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 14 |
12 6 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 15 |
1 10 4
|
lspsncl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 16 |
12 7 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 17 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 18 |
10 17
|
lsmcl |
⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 19 |
12 14 16 18
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 |
1 4
|
lspsnsubg |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 21 |
12 6 20
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 |
9 21
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 24 |
12 6 23
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) |
| 25 |
1 4
|
lspsnid |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 26 |
12 7 25
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) |
| 27 |
2 17
|
lsmelvali |
⊢ ( ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑌 } ) ∈ ( SubGrp ‘ 𝑊 ) ) ∧ ( 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ∧ 𝑌 ∈ ( 𝑁 ‘ { 𝑌 } ) ) ) → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 28 |
21 22 24 26 27
|
syl22anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 29 |
10 4 12 19 28
|
ellspsn5 |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 30 |
9
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) ) |
| 31 |
17
|
lsmidm |
⊢ ( ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 32 |
21 31
|
syl |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑋 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 33 |
30 32
|
eqtr3d |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { 𝑋 } ) ( LSSum ‘ 𝑊 ) ( 𝑁 ‘ { 𝑌 } ) ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 34 |
29 33
|
sseqtrd |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ) |
| 35 |
1 2
|
lmodvacl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 36 |
12 6 7 35
|
syl3anc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ 𝑉 ) |
| 37 |
|
eldifsn |
⊢ ( ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ↔ ( ( 𝑋 + 𝑌 ) ∈ 𝑉 ∧ ( 𝑋 + 𝑌 ) ≠ 0 ) ) |
| 38 |
36 8 37
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) ∈ ( 𝑉 ∖ { 0 } ) ) |
| 39 |
1 3 4 5 38 6
|
lspsncmp |
⊢ ( 𝜑 → ( ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ⊆ ( 𝑁 ‘ { 𝑋 } ) ↔ ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 40 |
34 39
|
mpbid |
⊢ ( 𝜑 → ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 41 |
40
|
eqcomd |
⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) = ( 𝑁 ‘ { ( 𝑋 + 𝑌 ) } ) ) |