| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eldif | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ )  ↔  ( ( 𝐴  /  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  /  𝐵 )  ∈  ℚ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							modval | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  mod  𝐵 )  =  ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							eqeq1d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) )  =  0 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐴  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							rpre | 
							⊢ ( 𝐵  ∈  ℝ+  →  𝐵  ∈  ℝ )  | 
						
						
							| 7 | 
							
								6
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  𝐵  ∈  ℝ )  | 
						
						
							| 8 | 
							
								
							 | 
							refldivcl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							remulcld | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ∈  ℝ )  | 
						
						
							| 10 | 
							
								9
							 | 
							recnd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								5 10
							 | 
							subeq0ad | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  −  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) )  =  0  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							rerpdivcl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ )  | 
						
						
							| 13 | 
							
								
							 | 
							reflcl | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								13
							 | 
							recnd | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ )  | 
						
						
							| 15 | 
							
								12 14
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ )  | 
						
						
							| 16 | 
							
								
							 | 
							rpcnne0 | 
							⊢ ( 𝐵  ∈  ℝ+  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							adantl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							divmul2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ∈  ℂ  ∧  ( 𝐵  ∈  ℂ  ∧  𝐵  ≠  0 ) )  →  ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) )  | 
						
						
							| 19 | 
							
								5 15 17 18
							 | 
							syl3anc | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝐴  /  𝐵 )  =  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) )  | 
						
						
							| 21 | 
							
								19 20
							 | 
							bitr3di | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( 𝐴  =  ( 𝐵  ·  ( ⌊ ‘ ( 𝐴  /  𝐵 ) ) )  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) ) )  | 
						
						
							| 22 | 
							
								3 11 21
							 | 
							3bitrd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  ↔  ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							flidz | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  ↔  ( 𝐴  /  𝐵 )  ∈  ℤ ) )  | 
						
						
							| 24 | 
							
								
							 | 
							zq | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℤ  →  ( 𝐴  /  𝐵 )  ∈  ℚ )  | 
						
						
							| 25 | 
							
								23 24
							 | 
							biimtrdi | 
							⊢ ( ( 𝐴  /  𝐵 )  ∈  ℝ  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) )  | 
						
						
							| 26 | 
							
								12 25
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ⌊ ‘ ( 𝐴  /  𝐵 ) )  =  ( 𝐴  /  𝐵 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) )  | 
						
						
							| 27 | 
							
								22 26
							 | 
							sylbid | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  mod  𝐵 )  =  0  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							necon3bd | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ¬  ( 𝐴  /  𝐵 )  ∈  ℚ  →  ( 𝐴  mod  𝐵 )  ≠  0 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantld | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( ( 𝐴  /  𝐵 )  ∈  ℝ  ∧  ¬  ( 𝐴  /  𝐵 )  ∈  ℚ )  →  ( 𝐴  mod  𝐵 )  ≠  0 ) )  | 
						
						
							| 30 | 
							
								1 29
							 | 
							biimtrid | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+ )  →  ( ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ )  →  ( 𝐴  mod  𝐵 )  ≠  0 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							3impia | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ+  ∧  ( 𝐴  /  𝐵 )  ∈  ( ℝ  ∖  ℚ ) )  →  ( 𝐴  mod  𝐵 )  ≠  0 )  |