Metamath Proof Explorer


Theorem mulgnn0gsum

Description: Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in Lang p. 6, second formula. (Contributed by AV, 28-Dec-2023)

Ref Expression
Hypotheses mulgnngsum.b 𝐵 = ( Base ‘ 𝐺 )
mulgnngsum.t · = ( .g𝐺 )
mulgnngsum.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 )
Assertion mulgnn0gsum ( ( 𝑁 ∈ ℕ0𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )

Proof

Step Hyp Ref Expression
1 mulgnngsum.b 𝐵 = ( Base ‘ 𝐺 )
2 mulgnngsum.t · = ( .g𝐺 )
3 mulgnngsum.f 𝐹 = ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 )
4 elnn0 ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) )
5 1 2 3 mulgnngsum ( ( 𝑁 ∈ ℕ ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )
6 5 ex ( 𝑁 ∈ ℕ → ( 𝑋𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) )
7 oveq1 ( 𝑁 = 0 → ( 𝑁 · 𝑋 ) = ( 0 · 𝑋 ) )
8 eqid ( 0g𝐺 ) = ( 0g𝐺 )
9 1 8 2 mulg0 ( 𝑋𝐵 → ( 0 · 𝑋 ) = ( 0g𝐺 ) )
10 7 9 sylan9eq ( ( 𝑁 = 0 ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 0g𝐺 ) )
11 oveq2 ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) )
12 fz10 ( 1 ... 0 ) = ∅
13 11 12 eqtrdi ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ )
14 eqidd ( 𝑁 = 0 → 𝑋 = 𝑋 )
15 13 14 mpteq12dv ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ( 𝑥 ∈ ∅ ↦ 𝑋 ) )
16 mpt0 ( 𝑥 ∈ ∅ ↦ 𝑋 ) = ∅
17 15 16 eqtrdi ( 𝑁 = 0 → ( 𝑥 ∈ ( 1 ... 𝑁 ) ↦ 𝑋 ) = ∅ )
18 3 17 syl5eq ( 𝑁 = 0 → 𝐹 = ∅ )
19 18 adantr ( ( 𝑁 = 0 ∧ 𝑋𝐵 ) → 𝐹 = ∅ )
20 19 oveq2d ( ( 𝑁 = 0 ∧ 𝑋𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ∅ ) )
21 8 gsum0 ( 𝐺 Σg ∅ ) = ( 0g𝐺 )
22 20 21 eqtrdi ( ( 𝑁 = 0 ∧ 𝑋𝐵 ) → ( 𝐺 Σg 𝐹 ) = ( 0g𝐺 ) )
23 10 22 eqtr4d ( ( 𝑁 = 0 ∧ 𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )
24 23 ex ( 𝑁 = 0 → ( 𝑋𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) )
25 6 24 jaoi ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 𝑋𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) )
26 4 25 sylbi ( 𝑁 ∈ ℕ0 → ( 𝑋𝐵 → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) ) )
27 26 imp ( ( 𝑁 ∈ ℕ0𝑋𝐵 ) → ( 𝑁 · 𝑋 ) = ( 𝐺 Σg 𝐹 ) )