| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐴 ∈ ℕ ) |
| 2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
| 3 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 2 ≤ 𝐵 ) |
| 4 |
|
id |
⊢ ( 𝑘 = 1 → 𝑘 = 1 ) |
| 5 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 1 ) ) |
| 6 |
4 5
|
breq12d |
⊢ ( 𝑘 = 1 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 1 ≤ ( 𝐵 ↑ 1 ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ ( 𝐵 ↑ 1 ) ) ) ) |
| 8 |
|
id |
⊢ ( 𝑘 = 𝑛 → 𝑘 = 𝑛 ) |
| 9 |
|
oveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝑛 ) ) |
| 10 |
8 9
|
breq12d |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) ) |
| 11 |
10
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) ) ) |
| 12 |
|
id |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → 𝑘 = ( 𝑛 + 1 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) |
| 14 |
12 13
|
breq12d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
| 16 |
|
id |
⊢ ( 𝑘 = 𝐴 → 𝑘 = 𝐴 ) |
| 17 |
|
oveq2 |
⊢ ( 𝑘 = 𝐴 → ( 𝐵 ↑ 𝑘 ) = ( 𝐵 ↑ 𝐴 ) ) |
| 18 |
16 17
|
breq12d |
⊢ ( 𝑘 = 𝐴 → ( 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ↔ 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) |
| 19 |
18
|
imbi2d |
⊢ ( 𝑘 = 𝐴 → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑘 ≤ ( 𝐵 ↑ 𝑘 ) ) ↔ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) ) |
| 20 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 21 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 22 |
21
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ∈ ℕ0 ) |
| 23 |
|
1red |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ∈ ℝ ) |
| 24 |
|
2re |
⊢ 2 ∈ ℝ |
| 25 |
24
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 2 ∈ ℝ ) |
| 26 |
|
1le2 |
⊢ 1 ≤ 2 |
| 27 |
26
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ 2 ) |
| 28 |
|
simpr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 2 ≤ 𝐵 ) |
| 29 |
23 25 20 27 28
|
letrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ 𝐵 ) |
| 30 |
20 22 29
|
expge1d |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 1 ≤ ( 𝐵 ↑ 1 ) ) |
| 31 |
|
simp1 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
| 32 |
31
|
nnred |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℝ ) |
| 33 |
|
1red |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 1 ∈ ℝ ) |
| 34 |
32 33
|
readdcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ∈ ℝ ) |
| 35 |
20
|
3ad2ant2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝐵 ∈ ℝ ) |
| 36 |
32 35
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 𝐵 ) ∈ ℝ ) |
| 37 |
31
|
nnnn0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) |
| 38 |
35 37
|
reexpcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝐵 ↑ 𝑛 ) ∈ ℝ ) |
| 39 |
38 35
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ∈ ℝ ) |
| 40 |
24
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 2 ∈ ℝ ) |
| 41 |
32 40
|
remulcld |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) ∈ ℝ ) |
| 42 |
31
|
nnge1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 1 ≤ 𝑛 ) |
| 43 |
33 32 32 42
|
leadd2dd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 + 𝑛 ) ) |
| 44 |
32
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ∈ ℂ ) |
| 45 |
44
|
times2d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) = ( 𝑛 + 𝑛 ) ) |
| 46 |
43 45
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 · 2 ) ) |
| 47 |
37
|
nn0ge0d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 0 ≤ 𝑛 ) |
| 48 |
|
simp2r |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 2 ≤ 𝐵 ) |
| 49 |
40 35 32 47 48
|
lemul2ad |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 2 ) ≤ ( 𝑛 · 𝐵 ) ) |
| 50 |
34 41 36 46 49
|
letrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝑛 · 𝐵 ) ) |
| 51 |
|
0red |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ∈ ℝ ) |
| 52 |
|
0le2 |
⊢ 0 ≤ 2 |
| 53 |
52
|
a1i |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ≤ 2 ) |
| 54 |
51 25 20 53 28
|
letrd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 0 ≤ 𝐵 ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 0 ≤ 𝐵 ) |
| 56 |
|
simp3 |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) |
| 57 |
32 38 35 55 56
|
lemul1ad |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 · 𝐵 ) ≤ ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
| 58 |
34 36 39 50 57
|
letrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
| 59 |
35
|
recnd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → 𝐵 ∈ ℂ ) |
| 60 |
59 37
|
expp1d |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝐵 ↑ ( 𝑛 + 1 ) ) = ( ( 𝐵 ↑ 𝑛 ) · 𝐵 ) ) |
| 61 |
58 60
|
breqtrrd |
⊢ ( ( 𝑛 ∈ ℕ ∧ ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) |
| 62 |
61
|
3exp |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
| 63 |
62
|
a2d |
⊢ ( 𝑛 ∈ ℕ → ( ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝑛 ≤ ( 𝐵 ↑ 𝑛 ) ) → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝑛 + 1 ) ≤ ( 𝐵 ↑ ( 𝑛 + 1 ) ) ) ) ) |
| 64 |
7 11 15 19 30 63
|
nnind |
⊢ ( 𝐴 ∈ ℕ → ( ( 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) ) |
| 65 |
64
|
3impib |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
| 66 |
1 2 3 65
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 ∈ ℕ ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
| 67 |
|
0le1 |
⊢ 0 ≤ 1 |
| 68 |
67
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 0 ≤ 1 ) |
| 69 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
| 70 |
69
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 𝐴 ) = ( 𝐵 ↑ 0 ) ) |
| 71 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℝ ) |
| 72 |
71
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℂ ) |
| 73 |
72
|
exp0d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 0 ) = 1 ) |
| 74 |
70 73
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → ( 𝐵 ↑ 𝐴 ) = 1 ) |
| 75 |
68 69 74
|
3brtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) ∧ 𝐴 = 0 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |
| 76 |
|
elnn0 |
⊢ ( 𝐴 ∈ ℕ0 ↔ ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 77 |
76
|
biimpi |
⊢ ( 𝐴 ∈ ℕ0 → ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 78 |
77
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → ( 𝐴 ∈ ℕ ∨ 𝐴 = 0 ) ) |
| 79 |
66 75 78
|
mpjaodan |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ∧ 2 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 ↑ 𝐴 ) ) |