Metamath Proof Explorer


Theorem nnsdomg

Description: Omega strictly dominates a natural number. Example 3 of Enderton p. 146. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 15-Jun-1998)

Ref Expression
Assertion nnsdomg ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≺ ω )

Proof

Step Hyp Ref Expression
1 ssdomg ( ω ∈ V → ( 𝐴 ⊆ ω → 𝐴 ≼ ω ) )
2 ordom Ord ω
3 ordelss ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω )
4 2 3 mpan ( 𝐴 ∈ ω → 𝐴 ⊆ ω )
5 1 4 impel ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≼ ω )
6 ominf ¬ ω ∈ Fin
7 ensym ( 𝐴 ≈ ω → ω ≈ 𝐴 )
8 breq2 ( 𝑥 = 𝐴 → ( ω ≈ 𝑥 ↔ ω ≈ 𝐴 ) )
9 8 rspcev ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ∃ 𝑥 ∈ ω ω ≈ 𝑥 )
10 isfi ( ω ∈ Fin ↔ ∃ 𝑥 ∈ ω ω ≈ 𝑥 )
11 9 10 sylibr ( ( 𝐴 ∈ ω ∧ ω ≈ 𝐴 ) → ω ∈ Fin )
12 11 ex ( 𝐴 ∈ ω → ( ω ≈ 𝐴 → ω ∈ Fin ) )
13 7 12 syl5 ( 𝐴 ∈ ω → ( 𝐴 ≈ ω → ω ∈ Fin ) )
14 6 13 mtoi ( 𝐴 ∈ ω → ¬ 𝐴 ≈ ω )
15 14 adantl ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → ¬ 𝐴 ≈ ω )
16 brsdom ( 𝐴 ≺ ω ↔ ( 𝐴 ≼ ω ∧ ¬ 𝐴 ≈ ω ) )
17 5 15 16 sylanbrc ( ( ω ∈ V ∧ 𝐴 ∈ ω ) → 𝐴 ≺ ω )