| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omlsilem.1 |
⊢ 𝐺 ∈ Sℋ |
| 2 |
|
omlsilem.2 |
⊢ 𝐻 ∈ Sℋ |
| 3 |
|
omlsilem.3 |
⊢ 𝐺 ⊆ 𝐻 |
| 4 |
|
omlsilem.4 |
⊢ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) = 0ℋ |
| 5 |
|
omlsilem.5 |
⊢ 𝐴 ∈ 𝐻 |
| 6 |
|
omlsilem.6 |
⊢ 𝐵 ∈ 𝐺 |
| 7 |
|
omlsilem.7 |
⊢ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) |
| 8 |
2 5
|
shelii |
⊢ 𝐴 ∈ ℋ |
| 9 |
1 6
|
shelii |
⊢ 𝐵 ∈ ℋ |
| 10 |
|
shocss |
⊢ ( 𝐺 ∈ Sℋ → ( ⊥ ‘ 𝐺 ) ⊆ ℋ ) |
| 11 |
1 10
|
ax-mp |
⊢ ( ⊥ ‘ 𝐺 ) ⊆ ℋ |
| 12 |
11 7
|
sselii |
⊢ 𝐶 ∈ ℋ |
| 13 |
8 9 12
|
hvsubaddi |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ ( 𝐵 +ℎ 𝐶 ) = 𝐴 ) |
| 14 |
|
eqcom |
⊢ ( ( 𝐵 +ℎ 𝐶 ) = 𝐴 ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
| 15 |
13 14
|
bitri |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 ↔ 𝐴 = ( 𝐵 +ℎ 𝐶 ) ) |
| 16 |
3 6
|
sselii |
⊢ 𝐵 ∈ 𝐻 |
| 17 |
|
shsubcl |
⊢ ( ( 𝐻 ∈ Sℋ ∧ 𝐴 ∈ 𝐻 ∧ 𝐵 ∈ 𝐻 ) → ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ) |
| 18 |
2 5 16 17
|
mp3an |
⊢ ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 |
| 19 |
|
eleq1 |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 → ( ( 𝐴 −ℎ 𝐵 ) ∈ 𝐻 ↔ 𝐶 ∈ 𝐻 ) ) |
| 20 |
18 19
|
mpbii |
⊢ ( ( 𝐴 −ℎ 𝐵 ) = 𝐶 → 𝐶 ∈ 𝐻 ) |
| 21 |
15 20
|
sylbir |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐶 ∈ 𝐻 ) |
| 22 |
4
|
eleq2i |
⊢ ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 ∈ 0ℋ ) |
| 23 |
|
elin |
⊢ ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ ( 𝐶 ∈ 𝐻 ∧ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) ) |
| 24 |
|
elch0 |
⊢ ( 𝐶 ∈ 0ℋ ↔ 𝐶 = 0ℎ ) |
| 25 |
22 23 24
|
3bitr3i |
⊢ ( ( 𝐶 ∈ 𝐻 ∧ 𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 = 0ℎ ) |
| 26 |
21 7 25
|
sylanblc |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐶 = 0ℎ ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) = ( 𝐵 +ℎ 0ℎ ) ) |
| 28 |
|
ax-hvaddid |
⊢ ( 𝐵 ∈ ℋ → ( 𝐵 +ℎ 0ℎ ) = 𝐵 ) |
| 29 |
9 28
|
ax-mp |
⊢ ( 𝐵 +ℎ 0ℎ ) = 𝐵 |
| 30 |
27 29
|
eqtrdi |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) = 𝐵 ) |
| 31 |
30 6
|
eqeltrdi |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐵 +ℎ 𝐶 ) ∈ 𝐺 ) |
| 32 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → ( 𝐴 ∈ 𝐺 ↔ ( 𝐵 +ℎ 𝐶 ) ∈ 𝐺 ) ) |
| 33 |
31 32
|
mpbird |
⊢ ( 𝐴 = ( 𝐵 +ℎ 𝐶 ) → 𝐴 ∈ 𝐺 ) |