Metamath Proof Explorer


Theorem omlsilem

Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omlsilem.1 𝐺S
omlsilem.2 𝐻S
omlsilem.3 𝐺𝐻
omlsilem.4 ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) = 0
omlsilem.5 𝐴𝐻
omlsilem.6 𝐵𝐺
omlsilem.7 𝐶 ∈ ( ⊥ ‘ 𝐺 )
Assertion omlsilem ( 𝐴 = ( 𝐵 + 𝐶 ) → 𝐴𝐺 )

Proof

Step Hyp Ref Expression
1 omlsilem.1 𝐺S
2 omlsilem.2 𝐻S
3 omlsilem.3 𝐺𝐻
4 omlsilem.4 ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) = 0
5 omlsilem.5 𝐴𝐻
6 omlsilem.6 𝐵𝐺
7 omlsilem.7 𝐶 ∈ ( ⊥ ‘ 𝐺 )
8 2 5 shelii 𝐴 ∈ ℋ
9 1 6 shelii 𝐵 ∈ ℋ
10 shocss ( 𝐺S → ( ⊥ ‘ 𝐺 ) ⊆ ℋ )
11 1 10 ax-mp ( ⊥ ‘ 𝐺 ) ⊆ ℋ
12 11 7 sselii 𝐶 ∈ ℋ
13 8 9 12 hvsubaddi ( ( 𝐴 𝐵 ) = 𝐶 ↔ ( 𝐵 + 𝐶 ) = 𝐴 )
14 eqcom ( ( 𝐵 + 𝐶 ) = 𝐴𝐴 = ( 𝐵 + 𝐶 ) )
15 13 14 bitri ( ( 𝐴 𝐵 ) = 𝐶𝐴 = ( 𝐵 + 𝐶 ) )
16 3 6 sselii 𝐵𝐻
17 shsubcl ( ( 𝐻S𝐴𝐻𝐵𝐻 ) → ( 𝐴 𝐵 ) ∈ 𝐻 )
18 2 5 16 17 mp3an ( 𝐴 𝐵 ) ∈ 𝐻
19 eleq1 ( ( 𝐴 𝐵 ) = 𝐶 → ( ( 𝐴 𝐵 ) ∈ 𝐻𝐶𝐻 ) )
20 18 19 mpbii ( ( 𝐴 𝐵 ) = 𝐶𝐶𝐻 )
21 15 20 sylbir ( 𝐴 = ( 𝐵 + 𝐶 ) → 𝐶𝐻 )
22 4 eleq2i ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 ∈ 0 )
23 elin ( 𝐶 ∈ ( 𝐻 ∩ ( ⊥ ‘ 𝐺 ) ) ↔ ( 𝐶𝐻𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) )
24 elch0 ( 𝐶 ∈ 0𝐶 = 0 )
25 22 23 24 3bitr3i ( ( 𝐶𝐻𝐶 ∈ ( ⊥ ‘ 𝐺 ) ) ↔ 𝐶 = 0 )
26 21 7 25 sylanblc ( 𝐴 = ( 𝐵 + 𝐶 ) → 𝐶 = 0 )
27 26 oveq2d ( 𝐴 = ( 𝐵 + 𝐶 ) → ( 𝐵 + 𝐶 ) = ( 𝐵 + 0 ) )
28 ax-hvaddid ( 𝐵 ∈ ℋ → ( 𝐵 + 0 ) = 𝐵 )
29 9 28 ax-mp ( 𝐵 + 0 ) = 𝐵
30 27 29 eqtrdi ( 𝐴 = ( 𝐵 + 𝐶 ) → ( 𝐵 + 𝐶 ) = 𝐵 )
31 30 6 eqeltrdi ( 𝐴 = ( 𝐵 + 𝐶 ) → ( 𝐵 + 𝐶 ) ∈ 𝐺 )
32 eleq1 ( 𝐴 = ( 𝐵 + 𝐶 ) → ( 𝐴𝐺 ↔ ( 𝐵 + 𝐶 ) ∈ 𝐺 ) )
33 31 32 mpbird ( 𝐴 = ( 𝐵 + 𝐶 ) → 𝐴𝐺 )