Metamath Proof Explorer


Theorem omlsilem

Description: Lemma for orthomodular law in the Hilbert lattice. (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses omlsilem.1 G S
omlsilem.2 H S
omlsilem.3 G H
omlsilem.4 H G = 0
omlsilem.5 A H
omlsilem.6 B G
omlsilem.7 C G
Assertion omlsilem A = B + C A G

Proof

Step Hyp Ref Expression
1 omlsilem.1 G S
2 omlsilem.2 H S
3 omlsilem.3 G H
4 omlsilem.4 H G = 0
5 omlsilem.5 A H
6 omlsilem.6 B G
7 omlsilem.7 C G
8 2 5 shelii A
9 1 6 shelii B
10 shocss G S G
11 1 10 ax-mp G
12 11 7 sselii C
13 8 9 12 hvsubaddi A - B = C B + C = A
14 eqcom B + C = A A = B + C
15 13 14 bitri A - B = C A = B + C
16 3 6 sselii B H
17 shsubcl H S A H B H A - B H
18 2 5 16 17 mp3an A - B H
19 eleq1 A - B = C A - B H C H
20 18 19 mpbii A - B = C C H
21 15 20 sylbir A = B + C C H
22 4 eleq2i C H G C 0
23 elin C H G C H C G
24 elch0 C 0 C = 0
25 22 23 24 3bitr3i C H C G C = 0
26 21 7 25 sylanblc A = B + C C = 0
27 26 oveq2d A = B + C B + C = B + 0
28 ax-hvaddid B B + 0 = B
29 9 28 ax-mp B + 0 = B
30 27 29 eqtrdi A = B + C B + C = B
31 30 6 eqeltrdi A = B + C B + C G
32 eleq1 A = B + C A G B + C G
33 31 32 mpbird A = B + C A G