Metamath Proof Explorer


Theorem oppcinv

Description: An inverse in the opposite category. (Contributed by Mario Carneiro, 3-Jan-2017)

Ref Expression
Hypotheses oppcsect.b 𝐵 = ( Base ‘ 𝐶 )
oppcsect.o 𝑂 = ( oppCat ‘ 𝐶 )
oppcsect.c ( 𝜑𝐶 ∈ Cat )
oppcsect.x ( 𝜑𝑋𝐵 )
oppcsect.y ( 𝜑𝑌𝐵 )
oppcinv.s 𝐼 = ( Inv ‘ 𝐶 )
oppcinv.t 𝐽 = ( Inv ‘ 𝑂 )
Assertion oppcinv ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) )

Proof

Step Hyp Ref Expression
1 oppcsect.b 𝐵 = ( Base ‘ 𝐶 )
2 oppcsect.o 𝑂 = ( oppCat ‘ 𝐶 )
3 oppcsect.c ( 𝜑𝐶 ∈ Cat )
4 oppcsect.x ( 𝜑𝑋𝐵 )
5 oppcsect.y ( 𝜑𝑌𝐵 )
6 oppcinv.s 𝐼 = ( Inv ‘ 𝐶 )
7 oppcinv.t 𝐽 = ( Inv ‘ 𝑂 )
8 incom ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) )
9 eqid ( Sect ‘ 𝐶 ) = ( Sect ‘ 𝐶 )
10 eqid ( Sect ‘ 𝑂 ) = ( Sect ‘ 𝑂 )
11 1 2 3 5 4 9 10 oppcsect2 ( 𝜑 → ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
12 11 cnveqd ( 𝜑 ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
13 eqid ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 )
14 eqid ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 )
15 eqid ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 )
16 1 13 14 15 9 3 5 4 sectss ( 𝜑 → ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) )
17 relxp Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) )
18 relss ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ⊆ ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → ( Rel ( ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) × ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ) )
19 16 17 18 mpisyl ( 𝜑 → Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
20 dfrel2 ( Rel ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ↔ ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
21 19 20 sylib ( 𝜑 ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
22 12 21 eqtrd ( 𝜑 ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) = ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) )
23 1 2 3 4 5 9 10 oppcsect2 ( 𝜑 → ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) = ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) )
24 22 23 ineq12d ( 𝜑 → ( ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) )
25 8 24 syl5eq ( 𝜑 → ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) )
26 2 1 oppcbas 𝐵 = ( Base ‘ 𝑂 )
27 2 oppccat ( 𝐶 ∈ Cat → 𝑂 ∈ Cat )
28 3 27 syl ( 𝜑𝑂 ∈ Cat )
29 26 7 28 4 5 10 invfval ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( ( 𝑋 ( Sect ‘ 𝑂 ) 𝑌 ) ∩ ( 𝑌 ( Sect ‘ 𝑂 ) 𝑋 ) ) )
30 1 6 3 5 4 9 invfval ( 𝜑 → ( 𝑌 𝐼 𝑋 ) = ( ( 𝑌 ( Sect ‘ 𝐶 ) 𝑋 ) ∩ ( 𝑋 ( Sect ‘ 𝐶 ) 𝑌 ) ) )
31 25 29 30 3eqtr4d ( 𝜑 → ( 𝑋 𝐽 𝑌 ) = ( 𝑌 𝐼 𝑋 ) )