Metamath Proof Explorer


Theorem otiunsndisjX

Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otiunsndisjX ( 𝐵𝑋Disj 𝑎𝑉 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )

Proof

Step Hyp Ref Expression
1 orc ( 𝑎 = 𝑑 → ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
2 1 a1d ( 𝑎 = 𝑑 → ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) ) )
3 eliun ( 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ ∃ 𝑐𝑊 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )
4 simprl ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → 𝑎𝑉 )
5 4 adantl ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → 𝑎𝑉 )
6 simprl ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → 𝐵𝑋 )
7 simpl ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → 𝑐𝑊 )
8 otthg ( ( 𝑎𝑉𝐵𝑋𝑐𝑊 ) → ( ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ( 𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒 ) ) )
9 5 6 7 8 syl3anc ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ( 𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒 ) ) )
10 simp1 ( ( 𝑎 = 𝑑𝐵 = 𝐵𝑐 = 𝑒 ) → 𝑎 = 𝑑 )
11 9 10 syl6bi ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ → 𝑎 = 𝑑 ) )
12 11 con3d ( ( 𝑐𝑊 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( ¬ 𝑎 = 𝑑 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
13 12 ex ( 𝑐𝑊 → ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( ¬ 𝑎 = 𝑑 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) ) )
14 13 com13 ( ¬ 𝑎 = 𝑑 → ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( 𝑐𝑊 → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) ) )
15 14 imp31 ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
16 15 adantr ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
17 16 adantr ( ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) ∧ 𝑒𝑊 ) → ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
18 velsn ( 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ )
19 eqeq1 ( 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ → ( 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
20 19 notbid ( 𝑠 = ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
21 18 20 sylbi ( 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
22 21 adantl ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
23 22 adantr ( ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) ∧ 𝑒𝑊 ) → ( ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ↔ ¬ ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ ) )
24 17 23 mpbird ( ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) ∧ 𝑒𝑊 ) → ¬ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
25 velsn ( 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ↔ 𝑠 = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
26 24 25 sylnibr ( ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) ∧ 𝑒𝑊 ) → ¬ 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
27 26 nrexdv ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ ∃ 𝑒𝑊 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
28 eliun ( 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ↔ ∃ 𝑒𝑊 𝑠 ∈ { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
29 27 28 sylnibr ( ( ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) ∧ 𝑐𝑊 ) ∧ 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ) → ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
30 29 rexlimdva2 ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( ∃ 𝑐𝑊 𝑠 ∈ { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ) )
31 3 30 syl5bi ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } → ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } ) )
32 31 ralrimiv ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ∀ 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
33 oteq3 ( 𝑐 = 𝑒 → ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ )
34 33 sneqd ( 𝑐 = 𝑒 → { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } = { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
35 34 cbviunv 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } = 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ }
36 35 eleq2i ( 𝑠 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
37 36 notbii ( ¬ 𝑠 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
38 37 ralbii ( ∀ 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ↔ ∀ 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑒𝑊 { ⟨ 𝑑 , 𝐵 , 𝑒 ⟩ } )
39 32 38 sylibr ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ∀ 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
40 disj ( ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ↔ ∀ 𝑠 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ¬ 𝑠 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
41 39 40 sylibr ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ )
42 41 olcd ( ( ¬ 𝑎 = 𝑑 ∧ ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) ) → ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
43 42 ex ( ¬ 𝑎 = 𝑑 → ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) ) )
44 2 43 pm2.61i ( ( 𝐵𝑋 ∧ ( 𝑎𝑉𝑑𝑉 ) ) → ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
45 44 ralrimivva ( 𝐵𝑋 → ∀ 𝑎𝑉𝑑𝑉 ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
46 oteq1 ( 𝑎 = 𝑑 → ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ = ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ )
47 46 sneqd ( 𝑎 = 𝑑 → { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } = { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
48 47 iuneq2d ( 𝑎 = 𝑑 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } = 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } )
49 48 disjor ( Disj 𝑎𝑉 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ↔ ∀ 𝑎𝑉𝑑𝑉 ( 𝑎 = 𝑑 ∨ ( 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } ∩ 𝑐𝑊 { ⟨ 𝑑 , 𝐵 , 𝑐 ⟩ } ) = ∅ ) )
50 45 49 sylibr ( 𝐵𝑋Disj 𝑎𝑉 𝑐𝑊 { ⟨ 𝑎 , 𝐵 , 𝑐 ⟩ } )