| Step | Hyp | Ref | Expression | 
						
							| 1 |  | orc |  | 
						
							| 2 | 1 | a1d |  | 
						
							| 3 |  | eliun |  | 
						
							| 4 |  | simprl |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | simprl |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 |  | otthg |  | 
						
							| 9 | 5 6 7 8 | syl3anc |  | 
						
							| 10 |  | simp1 |  | 
						
							| 11 | 9 10 | biimtrdi |  | 
						
							| 12 | 11 | con3d |  | 
						
							| 13 | 12 | ex |  | 
						
							| 14 | 13 | com13 |  | 
						
							| 15 | 14 | imp31 |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 |  | velsn |  | 
						
							| 19 |  | eqeq1 |  | 
						
							| 20 | 19 | notbid |  | 
						
							| 21 | 18 20 | sylbi |  | 
						
							| 22 | 21 | adantl |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 17 23 | mpbird |  | 
						
							| 25 |  | velsn |  | 
						
							| 26 | 24 25 | sylnibr |  | 
						
							| 27 | 26 | nrexdv |  | 
						
							| 28 |  | eliun |  | 
						
							| 29 | 27 28 | sylnibr |  | 
						
							| 30 | 29 | rexlimdva2 |  | 
						
							| 31 | 3 30 | biimtrid |  | 
						
							| 32 | 31 | ralrimiv |  | 
						
							| 33 |  | oteq3 |  | 
						
							| 34 | 33 | sneqd |  | 
						
							| 35 | 34 | cbviunv |  | 
						
							| 36 | 35 | eleq2i |  | 
						
							| 37 | 36 | notbii |  | 
						
							| 38 | 37 | ralbii |  | 
						
							| 39 | 32 38 | sylibr |  | 
						
							| 40 |  | disj |  | 
						
							| 41 | 39 40 | sylibr |  | 
						
							| 42 | 41 | olcd |  | 
						
							| 43 | 42 | ex |  | 
						
							| 44 | 2 43 | pm2.61i |  | 
						
							| 45 | 44 | ralrimivva |  | 
						
							| 46 |  | oteq1 |  | 
						
							| 47 | 46 | sneqd |  | 
						
							| 48 | 47 | iuneq2d |  | 
						
							| 49 | 48 | disjor |  | 
						
							| 50 | 45 49 | sylibr |  |