Metamath Proof Explorer


Theorem otiunsndisjX

Description: The union of singletons consisting of ordered triples which have distinct first and third components are disjunct. (Contributed by Alexander van der Vekens, 10-Mar-2018)

Ref Expression
Assertion otiunsndisjX B X Disj a V c W a B c

Proof

Step Hyp Ref Expression
1 orc a = d a = d c W a B c c W d B c =
2 1 a1d a = d B X a V d V a = d c W a B c c W d B c =
3 eliun s c W a B c c W s a B c
4 simprl B X a V d V a V
5 4 adantl c W B X a V d V a V
6 simprl c W B X a V d V B X
7 simpl c W B X a V d V c W
8 otthg a V B X c W a B c = d B e a = d B = B c = e
9 5 6 7 8 syl3anc c W B X a V d V a B c = d B e a = d B = B c = e
10 simp1 a = d B = B c = e a = d
11 9 10 syl6bi c W B X a V d V a B c = d B e a = d
12 11 con3d c W B X a V d V ¬ a = d ¬ a B c = d B e
13 12 ex c W B X a V d V ¬ a = d ¬ a B c = d B e
14 13 com13 ¬ a = d B X a V d V c W ¬ a B c = d B e
15 14 imp31 ¬ a = d B X a V d V c W ¬ a B c = d B e
16 15 adantr ¬ a = d B X a V d V c W s a B c ¬ a B c = d B e
17 16 adantr ¬ a = d B X a V d V c W s a B c e W ¬ a B c = d B e
18 velsn s a B c s = a B c
19 eqeq1 s = a B c s = d B e a B c = d B e
20 19 notbid s = a B c ¬ s = d B e ¬ a B c = d B e
21 18 20 sylbi s a B c ¬ s = d B e ¬ a B c = d B e
22 21 adantl ¬ a = d B X a V d V c W s a B c ¬ s = d B e ¬ a B c = d B e
23 22 adantr ¬ a = d B X a V d V c W s a B c e W ¬ s = d B e ¬ a B c = d B e
24 17 23 mpbird ¬ a = d B X a V d V c W s a B c e W ¬ s = d B e
25 velsn s d B e s = d B e
26 24 25 sylnibr ¬ a = d B X a V d V c W s a B c e W ¬ s d B e
27 26 nrexdv ¬ a = d B X a V d V c W s a B c ¬ e W s d B e
28 eliun s e W d B e e W s d B e
29 27 28 sylnibr ¬ a = d B X a V d V c W s a B c ¬ s e W d B e
30 29 rexlimdva2 ¬ a = d B X a V d V c W s a B c ¬ s e W d B e
31 3 30 syl5bi ¬ a = d B X a V d V s c W a B c ¬ s e W d B e
32 31 ralrimiv ¬ a = d B X a V d V s c W a B c ¬ s e W d B e
33 oteq3 c = e d B c = d B e
34 33 sneqd c = e d B c = d B e
35 34 cbviunv c W d B c = e W d B e
36 35 eleq2i s c W d B c s e W d B e
37 36 notbii ¬ s c W d B c ¬ s e W d B e
38 37 ralbii s c W a B c ¬ s c W d B c s c W a B c ¬ s e W d B e
39 32 38 sylibr ¬ a = d B X a V d V s c W a B c ¬ s c W d B c
40 disj c W a B c c W d B c = s c W a B c ¬ s c W d B c
41 39 40 sylibr ¬ a = d B X a V d V c W a B c c W d B c =
42 41 olcd ¬ a = d B X a V d V a = d c W a B c c W d B c =
43 42 ex ¬ a = d B X a V d V a = d c W a B c c W d B c =
44 2 43 pm2.61i B X a V d V a = d c W a B c c W d B c =
45 44 ralrimivva B X a V d V a = d c W a B c c W d B c =
46 oteq1 a = d a B c = d B c
47 46 sneqd a = d a B c = d B c
48 47 iuneq2d a = d c W a B c = c W d B c
49 48 disjor Disj a V c W a B c a V d V a = d c W a B c c W d B c =
50 45 49 sylibr B X Disj a V c W a B c