Step |
Hyp |
Ref |
Expression |
1 |
|
nnex |
⊢ ℕ ∈ V |
2 |
1 1
|
xpex |
⊢ ( ℕ × ℕ ) ∈ V |
3 |
|
opabssxp |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ⊆ ( ℕ × ℕ ) |
4 |
|
ssdomg |
⊢ ( ( ℕ × ℕ ) ∈ V → ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ⊆ ( ℕ × ℕ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ( ℕ × ℕ ) ) ) |
5 |
2 3 4
|
mp2 |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ( ℕ × ℕ ) |
6 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
7 |
|
domentr |
⊢ ( ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ( ℕ × ℕ ) ∧ ( ℕ × ℕ ) ≈ ℕ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ℕ ) |
8 |
5 6 7
|
mp2an |
⊢ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ℕ |
9 |
|
nnrp |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℝ+ ) |
10 |
9
|
rpsqrtcld |
⊢ ( 𝐷 ∈ ℕ → ( √ ‘ 𝐷 ) ∈ ℝ+ ) |
11 |
10
|
anim1i |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( √ ‘ 𝐷 ) ∈ ℝ+ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
12 |
|
eldif |
⊢ ( ( √ ‘ 𝐷 ) ∈ ( ℝ+ ∖ ℚ ) ↔ ( ( √ ‘ 𝐷 ) ∈ ℝ+ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
13 |
11 12
|
sylibr |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( √ ‘ 𝐷 ) ∈ ( ℝ+ ∖ ℚ ) ) |
14 |
|
irrapx1 |
⊢ ( ( √ ‘ 𝐷 ) ∈ ( ℝ+ ∖ ℚ ) → { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ≈ ℕ ) |
15 |
|
ensym |
⊢ ( { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ≈ ℕ → ℕ ≈ { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ) |
16 |
13 14 15
|
3syl |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ℕ ≈ { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ) |
17 |
|
pellexlem3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) |
18 |
|
endomtr |
⊢ ( ( ℕ ≈ { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ∧ { 𝑏 ∈ ℚ ∣ ( 0 < 𝑏 ∧ ( abs ‘ ( 𝑏 − ( √ ‘ 𝐷 ) ) ) < ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) → ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) |
19 |
16 17 18
|
syl2anc |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) |
20 |
|
sbth |
⊢ ( ( { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≼ ℕ ∧ ℕ ≼ { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≈ ℕ ) |
21 |
8 19 20
|
sylancr |
⊢ ( ( 𝐷 ∈ ℕ ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → { 〈 𝑦 , 𝑧 〉 ∣ ( ( 𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ ) ∧ ( ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ≠ 0 ∧ ( abs ‘ ( ( 𝑦 ↑ 2 ) − ( 𝐷 · ( 𝑧 ↑ 2 ) ) ) ) < ( 1 + ( 2 · ( √ ‘ 𝐷 ) ) ) ) ) } ≈ ℕ ) |