| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 2 | 1 1 | xpex | ⊢ ( ℕ  ×  ℕ )  ∈  V | 
						
							| 3 |  | opabssxp | ⊢ { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ⊆  ( ℕ  ×  ℕ ) | 
						
							| 4 |  | ssdomg | ⊢ ( ( ℕ  ×  ℕ )  ∈  V  →  ( { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ⊆  ( ℕ  ×  ℕ )  →  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ( ℕ  ×  ℕ ) ) ) | 
						
							| 5 | 2 3 4 | mp2 | ⊢ { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ( ℕ  ×  ℕ ) | 
						
							| 6 |  | xpnnen | ⊢ ( ℕ  ×  ℕ )  ≈  ℕ | 
						
							| 7 |  | domentr | ⊢ ( ( { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ( ℕ  ×  ℕ )  ∧  ( ℕ  ×  ℕ )  ≈  ℕ )  →  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ℕ ) | 
						
							| 8 | 5 6 7 | mp2an | ⊢ { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ℕ | 
						
							| 9 |  | nnrp | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℝ+ ) | 
						
							| 10 | 9 | rpsqrtcld | ⊢ ( 𝐷  ∈  ℕ  →  ( √ ‘ 𝐷 )  ∈  ℝ+ ) | 
						
							| 11 | 10 | anim1i | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( ( √ ‘ 𝐷 )  ∈  ℝ+  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 12 |  | eldif | ⊢ ( ( √ ‘ 𝐷 )  ∈  ( ℝ+  ∖  ℚ )  ↔  ( ( √ ‘ 𝐷 )  ∈  ℝ+  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 13 | 11 12 | sylibr | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( √ ‘ 𝐷 )  ∈  ( ℝ+  ∖  ℚ ) ) | 
						
							| 14 |  | irrapx1 | ⊢ ( ( √ ‘ 𝐷 )  ∈  ( ℝ+  ∖  ℚ )  →  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) }  ≈  ℕ ) | 
						
							| 15 |  | ensym | ⊢ ( { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) }  ≈  ℕ  →  ℕ  ≈  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ℕ  ≈  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) } ) | 
						
							| 17 |  | pellexlem3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) }  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) | 
						
							| 18 |  | endomtr | ⊢ ( ( ℕ  ≈  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) }  ∧  { 𝑏  ∈  ℚ  ∣  ( 0  <  𝑏  ∧  ( abs ‘ ( 𝑏  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑏 ) ↑ - 2 ) ) }  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } )  →  ℕ  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) | 
						
							| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ℕ  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) | 
						
							| 20 |  | sbth | ⊢ ( ( { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≼  ℕ  ∧  ℕ  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } )  →  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≈  ℕ ) | 
						
							| 21 | 8 19 20 | sylancr | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ≈  ℕ ) |