Metamath Proof Explorer


Theorem pellexlem4

Description: Lemma for pellex . Invoking irrapx1 , we have infinitely many near-solutions. (Contributed by Stefan O'Rear, 14-Sep-2014)

Ref Expression
Assertion pellexlem4 D¬Dyz|yzy2Dz20y2Dz2<1+2D

Proof

Step Hyp Ref Expression
1 nnex V
2 1 1 xpex ×V
3 opabssxp yz|yzy2Dz20y2Dz2<1+2D×
4 ssdomg ×Vyz|yzy2Dz20y2Dz2<1+2D×yz|yzy2Dz20y2Dz2<1+2D×
5 2 3 4 mp2 yz|yzy2Dz20y2Dz2<1+2D×
6 xpnnen ×
7 domentr yz|yzy2Dz20y2Dz2<1+2D××yz|yzy2Dz20y2Dz2<1+2D
8 5 6 7 mp2an yz|yzy2Dz20y2Dz2<1+2D
9 nnrp DD+
10 9 rpsqrtcld DD+
11 10 anim1i D¬DD+¬D
12 eldif D+D+¬D
13 11 12 sylibr D¬DD+
14 irrapx1 D+b|0<bbD<denomb2
15 ensym b|0<bbD<denomb2b|0<bbD<denomb2
16 13 14 15 3syl D¬Db|0<bbD<denomb2
17 pellexlem3 D¬Db|0<bbD<denomb2yz|yzy2Dz20y2Dz2<1+2D
18 endomtr b|0<bbD<denomb2b|0<bbD<denomb2yz|yzy2Dz20y2Dz2<1+2Dyz|yzy2Dz20y2Dz2<1+2D
19 16 17 18 syl2anc D¬Dyz|yzy2Dz20y2Dz2<1+2D
20 sbth yz|yzy2Dz20y2Dz2<1+2Dyz|yzy2Dz20y2Dz2<1+2Dyz|yzy2Dz20y2Dz2<1+2D
21 8 19 20 sylancr D¬Dyz|yzy2Dz20y2Dz2<1+2D