| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 2 | 1 1 | xpex | ⊢ ( ℕ  ×  ℕ )  ∈  V | 
						
							| 3 |  | opabssxp | ⊢ { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ⊆  ( ℕ  ×  ℕ ) | 
						
							| 4 | 2 3 | ssexi | ⊢ { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ∈  V | 
						
							| 5 |  | simprl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  𝑎  ∈  ℚ ) | 
						
							| 6 |  | simprrl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  0  <  𝑎 ) | 
						
							| 7 |  | qgt0numnn | ⊢ ( ( 𝑎  ∈  ℚ  ∧  0  <  𝑎 )  →  ( numer ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 8 | 5 6 7 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( numer ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 9 |  | qdencl | ⊢ ( 𝑎  ∈  ℚ  →  ( denom ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 10 | 5 9 | syl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( denom ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 11 | 8 10 | jca | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ ) ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  𝐷  ∈  ℕ ) | 
						
							| 13 |  | simplr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ¬  ( √ ‘ 𝐷 )  ∈  ℚ ) | 
						
							| 14 |  | pellexlem1 | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0 ) | 
						
							| 15 | 12 8 10 13 14 | syl31anc | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0 ) | 
						
							| 16 |  | simprrr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) | 
						
							| 17 |  | qeqnumdivden | ⊢ ( 𝑎  ∈  ℚ  →  𝑎  =  ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) ) ) | 
						
							| 18 | 17 | oveq1d | ⊢ ( 𝑎  ∈  ℚ  →  ( 𝑎  −  ( √ ‘ 𝐷 ) )  =  ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝑎  ∈  ℚ  →  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  =  ( abs ‘ ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 20 | 19 | breq1d | ⊢ ( 𝑎  ∈  ℚ  →  ( ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 )  ↔  ( abs ‘ ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) | 
						
							| 21 | 5 20 | syl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 )  ↔  ( abs ‘ ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) | 
						
							| 22 | 16 21 | mpbid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( abs ‘ ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) | 
						
							| 23 |  | pellexlem2 | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) )  →  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 24 | 12 8 10 22 23 | syl31anc | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 25 | 11 15 24 | jca32 | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) )  →  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 26 | 25 | ex | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) )  →  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) ) | 
						
							| 27 |  | breq2 | ⊢ ( 𝑥  =  𝑎  →  ( 0  <  𝑥  ↔  0  <  𝑎 ) ) | 
						
							| 28 |  | fvoveq1 | ⊢ ( 𝑥  =  𝑎  →  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  =  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) ) ) | 
						
							| 29 |  | fveq2 | ⊢ ( 𝑥  =  𝑎  →  ( denom ‘ 𝑥 )  =  ( denom ‘ 𝑎 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝑥  =  𝑎  →  ( ( denom ‘ 𝑥 ) ↑ - 2 )  =  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) | 
						
							| 31 | 28 30 | breq12d | ⊢ ( 𝑥  =  𝑎  →  ( ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 )  ↔  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) | 
						
							| 32 | 27 31 | anbi12d | ⊢ ( 𝑥  =  𝑎  →  ( ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) )  ↔  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) | 
						
							| 33 | 32 | elrab | ⊢ ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ↔  ( 𝑎  ∈  ℚ  ∧  ( 0  <  𝑎  ∧  ( abs ‘ ( 𝑎  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑎 ) ↑ - 2 ) ) ) ) | 
						
							| 34 |  | fvex | ⊢ ( numer ‘ 𝑎 )  ∈  V | 
						
							| 35 |  | fvex | ⊢ ( denom ‘ 𝑎 )  ∈  V | 
						
							| 36 |  | eleq1 | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( 𝑦  ∈  ℕ  ↔  ( numer ‘ 𝑎 )  ∈  ℕ ) ) | 
						
							| 37 | 36 | anbi1d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ↔  ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  𝑧  ∈  ℕ ) ) ) | 
						
							| 38 |  | oveq1 | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( 𝑦 ↑ 2 )  =  ( ( numer ‘ 𝑎 ) ↑ 2 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  =  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) ) | 
						
							| 40 | 39 | neeq1d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ↔  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 41 | 39 | fveq2d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  =  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) ) ) | 
						
							| 42 | 41 | breq1d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) )  ↔  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) | 
						
							| 43 | 40 42 | anbi12d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) )  ↔  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 44 | 37 43 | anbi12d | ⊢ ( 𝑦  =  ( numer ‘ 𝑎 )  →  ( ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) )  ↔  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) ) | 
						
							| 45 |  | eleq1 | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( 𝑧  ∈  ℕ  ↔  ( denom ‘ 𝑎 )  ∈  ℕ ) ) | 
						
							| 46 | 45 | anbi2d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ↔  ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ ) ) ) | 
						
							| 47 |  | oveq1 | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( 𝑧 ↑ 2 )  =  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) | 
						
							| 48 | 47 | oveq2d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( 𝐷  ·  ( 𝑧 ↑ 2 ) )  =  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) | 
						
							| 49 | 48 | oveq2d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  =  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) | 
						
							| 50 | 49 | neeq1d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ↔  ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 51 | 49 | fveq2d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  =  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) ) ) | 
						
							| 52 | 51 | breq1d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) )  ↔  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) | 
						
							| 53 | 50 52 | anbi12d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) )  ↔  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 54 | 46 53 | anbi12d | ⊢ ( 𝑧  =  ( denom ‘ 𝑎 )  →  ( ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) )  ↔  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) ) | 
						
							| 55 | 34 35 44 54 | opelopab | ⊢ ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  ∈  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ↔  ( ( ( numer ‘ 𝑎 )  ∈  ℕ  ∧  ( denom ‘ 𝑎 )  ∈  ℕ )  ∧  ( ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( ( numer ‘ 𝑎 ) ↑ 2 )  −  ( 𝐷  ·  ( ( denom ‘ 𝑎 ) ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) ) | 
						
							| 56 | 26 33 55 | 3imtr4g | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  →  〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  ∈  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) ) | 
						
							| 57 |  | ssrab2 | ⊢ { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ⊆  ℚ | 
						
							| 58 |  | simprl | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) )  →  𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) | 
						
							| 59 | 57 58 | sselid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) )  →  𝑎  ∈  ℚ ) | 
						
							| 60 |  | simprr | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) )  →  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) | 
						
							| 61 | 57 60 | sselid | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) )  →  𝑏  ∈  ℚ ) | 
						
							| 62 | 34 35 | opth | ⊢ ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉  ↔  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) ) | 
						
							| 63 |  | simprl | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 ) ) | 
						
							| 64 |  | simprr | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) | 
						
							| 65 | 63 64 | oveq12d | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) )  =  ( ( numer ‘ 𝑏 )  /  ( denom ‘ 𝑏 ) ) ) | 
						
							| 66 |  | simpll | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  𝑎  ∈  ℚ ) | 
						
							| 67 | 66 17 | syl | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  𝑎  =  ( ( numer ‘ 𝑎 )  /  ( denom ‘ 𝑎 ) ) ) | 
						
							| 68 |  | simplr | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  𝑏  ∈  ℚ ) | 
						
							| 69 |  | qeqnumdivden | ⊢ ( 𝑏  ∈  ℚ  →  𝑏  =  ( ( numer ‘ 𝑏 )  /  ( denom ‘ 𝑏 ) ) ) | 
						
							| 70 | 68 69 | syl | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  𝑏  =  ( ( numer ‘ 𝑏 )  /  ( denom ‘ 𝑏 ) ) ) | 
						
							| 71 | 65 67 70 | 3eqtr4d | ⊢ ( ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  ∧  ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) )  →  𝑎  =  𝑏 ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  →  ( ( ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 )  ∧  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) )  →  𝑎  =  𝑏 ) ) | 
						
							| 73 | 62 72 | biimtrid | ⊢ ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  →  ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉  →  𝑎  =  𝑏 ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( numer ‘ 𝑎 )  =  ( numer ‘ 𝑏 ) ) | 
						
							| 75 |  | fveq2 | ⊢ ( 𝑎  =  𝑏  →  ( denom ‘ 𝑎 )  =  ( denom ‘ 𝑏 ) ) | 
						
							| 76 | 74 75 | opeq12d | ⊢ ( 𝑎  =  𝑏  →  〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉 ) | 
						
							| 77 | 73 76 | impbid1 | ⊢ ( ( 𝑎  ∈  ℚ  ∧  𝑏  ∈  ℚ )  →  ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉  ↔  𝑎  =  𝑏 ) ) | 
						
							| 78 | 59 61 77 | syl2anc | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  ∧  ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } ) )  →  ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉  ↔  𝑎  =  𝑏 ) ) | 
						
							| 79 | 78 | ex | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( ( 𝑎  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ∧  𝑏  ∈  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) } )  →  ( 〈 ( numer ‘ 𝑎 ) ,  ( denom ‘ 𝑎 ) 〉  =  〈 ( numer ‘ 𝑏 ) ,  ( denom ‘ 𝑏 ) 〉  ↔  𝑎  =  𝑏 ) ) ) | 
						
							| 80 | 56 79 | dom2d | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) }  ∈  V  →  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) ) | 
						
							| 81 | 4 80 | mpi | ⊢ ( ( 𝐷  ∈  ℕ  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  { 𝑥  ∈  ℚ  ∣  ( 0  <  𝑥  ∧  ( abs ‘ ( 𝑥  −  ( √ ‘ 𝐷 ) ) )  <  ( ( denom ‘ 𝑥 ) ↑ - 2 ) ) }  ≼  { 〈 𝑦 ,  𝑧 〉  ∣  ( ( 𝑦  ∈  ℕ  ∧  𝑧  ∈  ℕ )  ∧  ( ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) )  ≠  0  ∧  ( abs ‘ ( ( 𝑦 ↑ 2 )  −  ( 𝐷  ·  ( 𝑧 ↑ 2 ) ) ) )  <  ( 1  +  ( 2  ·  ( √ ‘ 𝐷 ) ) ) ) ) } ) |