| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnex |  |-  NN e. _V | 
						
							| 2 | 1 1 | xpex |  |-  ( NN X. NN ) e. _V | 
						
							| 3 |  | opabssxp |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } C_ ( NN X. NN ) | 
						
							| 4 | 2 3 | ssexi |  |-  { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } e. _V | 
						
							| 5 |  | simprl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> a e. QQ ) | 
						
							| 6 |  | simprrl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> 0 < a ) | 
						
							| 7 |  | qgt0numnn |  |-  ( ( a e. QQ /\ 0 < a ) -> ( numer ` a ) e. NN ) | 
						
							| 8 | 5 6 7 | syl2anc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( numer ` a ) e. NN ) | 
						
							| 9 |  | qdencl |  |-  ( a e. QQ -> ( denom ` a ) e. NN ) | 
						
							| 10 | 5 9 | syl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( denom ` a ) e. NN ) | 
						
							| 11 | 8 10 | jca |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) ) | 
						
							| 12 |  | simpll |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> D e. NN ) | 
						
							| 13 |  | simplr |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> -. ( sqrt ` D ) e. QQ ) | 
						
							| 14 |  | pellexlem1 |  |-  ( ( ( D e. NN /\ ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ -. ( sqrt ` D ) e. QQ ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) | 
						
							| 15 | 12 8 10 13 14 | syl31anc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) | 
						
							| 16 |  | simprrr |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) | 
						
							| 17 |  | qeqnumdivden |  |-  ( a e. QQ -> a = ( ( numer ` a ) / ( denom ` a ) ) ) | 
						
							| 18 | 17 | oveq1d |  |-  ( a e. QQ -> ( a - ( sqrt ` D ) ) = ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) | 
						
							| 19 | 18 | fveq2d |  |-  ( a e. QQ -> ( abs ` ( a - ( sqrt ` D ) ) ) = ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) ) | 
						
							| 20 | 19 | breq1d |  |-  ( a e. QQ -> ( ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) <-> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) | 
						
							| 21 | 5 20 | syl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) <-> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) | 
						
							| 22 | 16 21 | mpbid |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) | 
						
							| 23 |  | pellexlem2 |  |-  ( ( ( D e. NN /\ ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( abs ` ( ( ( numer ` a ) / ( denom ` a ) ) - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 24 | 12 8 10 22 23 | syl31anc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 25 | 11 15 24 | jca32 |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) -> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 26 | 25 | ex |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) -> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 27 |  | breq2 |  |-  ( x = a -> ( 0 < x <-> 0 < a ) ) | 
						
							| 28 |  | fvoveq1 |  |-  ( x = a -> ( abs ` ( x - ( sqrt ` D ) ) ) = ( abs ` ( a - ( sqrt ` D ) ) ) ) | 
						
							| 29 |  | fveq2 |  |-  ( x = a -> ( denom ` x ) = ( denom ` a ) ) | 
						
							| 30 | 29 | oveq1d |  |-  ( x = a -> ( ( denom ` x ) ^ -u 2 ) = ( ( denom ` a ) ^ -u 2 ) ) | 
						
							| 31 | 28 30 | breq12d |  |-  ( x = a -> ( ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) <-> ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) | 
						
							| 32 | 27 31 | anbi12d |  |-  ( x = a -> ( ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) <-> ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) | 
						
							| 33 | 32 | elrab |  |-  ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } <-> ( a e. QQ /\ ( 0 < a /\ ( abs ` ( a - ( sqrt ` D ) ) ) < ( ( denom ` a ) ^ -u 2 ) ) ) ) | 
						
							| 34 |  | fvex |  |-  ( numer ` a ) e. _V | 
						
							| 35 |  | fvex |  |-  ( denom ` a ) e. _V | 
						
							| 36 |  | eleq1 |  |-  ( y = ( numer ` a ) -> ( y e. NN <-> ( numer ` a ) e. NN ) ) | 
						
							| 37 | 36 | anbi1d |  |-  ( y = ( numer ` a ) -> ( ( y e. NN /\ z e. NN ) <-> ( ( numer ` a ) e. NN /\ z e. NN ) ) ) | 
						
							| 38 |  | oveq1 |  |-  ( y = ( numer ` a ) -> ( y ^ 2 ) = ( ( numer ` a ) ^ 2 ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( y = ( numer ` a ) -> ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) | 
						
							| 40 | 39 | neeq1d |  |-  ( y = ( numer ` a ) -> ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 <-> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 41 | 39 | fveq2d |  |-  ( y = ( numer ` a ) -> ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) = ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) ) | 
						
							| 42 | 41 | breq1d |  |-  ( y = ( numer ` a ) -> ( ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) <-> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) | 
						
							| 43 | 40 42 | anbi12d |  |-  ( y = ( numer ` a ) -> ( ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 44 | 37 43 | anbi12d |  |-  ( y = ( numer ` a ) -> ( ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( ( ( numer ` a ) e. NN /\ z e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 45 |  | eleq1 |  |-  ( z = ( denom ` a ) -> ( z e. NN <-> ( denom ` a ) e. NN ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( z = ( denom ` a ) -> ( ( ( numer ` a ) e. NN /\ z e. NN ) <-> ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) ) ) | 
						
							| 47 |  | oveq1 |  |-  ( z = ( denom ` a ) -> ( z ^ 2 ) = ( ( denom ` a ) ^ 2 ) ) | 
						
							| 48 | 47 | oveq2d |  |-  ( z = ( denom ` a ) -> ( D x. ( z ^ 2 ) ) = ( D x. ( ( denom ` a ) ^ 2 ) ) ) | 
						
							| 49 | 48 | oveq2d |  |-  ( z = ( denom ` a ) -> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) = ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) | 
						
							| 50 | 49 | neeq1d |  |-  ( z = ( denom ` a ) -> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 <-> ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 51 | 49 | fveq2d |  |-  ( z = ( denom ` a ) -> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) = ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) ) | 
						
							| 52 | 51 | breq1d |  |-  ( z = ( denom ` a ) -> ( ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) <-> ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) | 
						
							| 53 | 50 52 | anbi12d |  |-  ( z = ( denom ` a ) -> ( ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) <-> ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 54 | 46 53 | anbi12d |  |-  ( z = ( denom ` a ) -> ( ( ( ( numer ` a ) e. NN /\ z e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) <-> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 55 | 34 35 44 54 | opelopab |  |-  ( <. ( numer ` a ) , ( denom ` a ) >. e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } <-> ( ( ( numer ` a ) e. NN /\ ( denom ` a ) e. NN ) /\ ( ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( ( numer ` a ) ^ 2 ) - ( D x. ( ( denom ` a ) ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) ) | 
						
							| 56 | 26 33 55 | 3imtr4g |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } -> <. ( numer ` a ) , ( denom ` a ) >. e. { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) ) | 
						
							| 57 |  | ssrab2 |  |-  { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } C_ QQ | 
						
							| 58 |  | simprl |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) | 
						
							| 59 | 57 58 | sselid |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> a e. QQ ) | 
						
							| 60 |  | simprr |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) | 
						
							| 61 | 57 60 | sselid |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> b e. QQ ) | 
						
							| 62 | 34 35 | opth |  |-  ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) | 
						
							| 63 |  | simprl |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( numer ` a ) = ( numer ` b ) ) | 
						
							| 64 |  | simprr |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( denom ` a ) = ( denom ` b ) ) | 
						
							| 65 | 63 64 | oveq12d |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> ( ( numer ` a ) / ( denom ` a ) ) = ( ( numer ` b ) / ( denom ` b ) ) ) | 
						
							| 66 |  | simpll |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a e. QQ ) | 
						
							| 67 | 66 17 | syl |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a = ( ( numer ` a ) / ( denom ` a ) ) ) | 
						
							| 68 |  | simplr |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> b e. QQ ) | 
						
							| 69 |  | qeqnumdivden |  |-  ( b e. QQ -> b = ( ( numer ` b ) / ( denom ` b ) ) ) | 
						
							| 70 | 68 69 | syl |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> b = ( ( numer ` b ) / ( denom ` b ) ) ) | 
						
							| 71 | 65 67 70 | 3eqtr4d |  |-  ( ( ( a e. QQ /\ b e. QQ ) /\ ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) ) -> a = b ) | 
						
							| 72 | 71 | ex |  |-  ( ( a e. QQ /\ b e. QQ ) -> ( ( ( numer ` a ) = ( numer ` b ) /\ ( denom ` a ) = ( denom ` b ) ) -> a = b ) ) | 
						
							| 73 | 62 72 | biimtrid |  |-  ( ( a e. QQ /\ b e. QQ ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. -> a = b ) ) | 
						
							| 74 |  | fveq2 |  |-  ( a = b -> ( numer ` a ) = ( numer ` b ) ) | 
						
							| 75 |  | fveq2 |  |-  ( a = b -> ( denom ` a ) = ( denom ` b ) ) | 
						
							| 76 | 74 75 | opeq12d |  |-  ( a = b -> <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. ) | 
						
							| 77 | 73 76 | impbid1 |  |-  ( ( a e. QQ /\ b e. QQ ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) | 
						
							| 78 | 59 61 77 | syl2anc |  |-  ( ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) /\ ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) | 
						
							| 79 | 78 | ex |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( ( a e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } /\ b e. { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ) -> ( <. ( numer ` a ) , ( denom ` a ) >. = <. ( numer ` b ) , ( denom ` b ) >. <-> a = b ) ) ) | 
						
							| 80 | 56 79 | dom2d |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> ( { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } e. _V -> { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) ) | 
						
							| 81 | 4 80 | mpi |  |-  ( ( D e. NN /\ -. ( sqrt ` D ) e. QQ ) -> { x e. QQ | ( 0 < x /\ ( abs ` ( x - ( sqrt ` D ) ) ) < ( ( denom ` x ) ^ -u 2 ) ) } ~<_ { <. y , z >. | ( ( y e. NN /\ z e. NN ) /\ ( ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) =/= 0 /\ ( abs ` ( ( y ^ 2 ) - ( D x. ( z ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) ) } ) |