| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl3 |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. NN ) | 
						
							| 2 | 1 | nnred |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. RR ) | 
						
							| 3 | 2 | resqcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. RR ) | 
						
							| 4 | 2 | sqge0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( B ^ 2 ) ) | 
						
							| 5 | 3 4 | absidd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) | 
						
							| 7 | 6 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) | 
						
							| 8 |  | simpl2 |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. NN ) | 
						
							| 9 | 8 | nncnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. CC ) | 
						
							| 10 | 9 | sqcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A ^ 2 ) e. CC ) | 
						
							| 11 |  | simpl1 |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN ) | 
						
							| 12 | 11 | nncnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. CC ) | 
						
							| 13 | 1 | nncnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. CC ) | 
						
							| 14 | 13 | sqcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. CC ) | 
						
							| 15 | 12 14 | mulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( D x. ( B ^ 2 ) ) e. CC ) | 
						
							| 16 | 10 15 | subcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) e. CC ) | 
						
							| 17 | 1 | nnne0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B =/= 0 ) | 
						
							| 18 |  | sqne0 |  |-  ( B e. CC -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) | 
						
							| 19 | 18 | biimpar |  |-  ( ( B e. CC /\ B =/= 0 ) -> ( B ^ 2 ) =/= 0 ) | 
						
							| 20 | 13 17 19 | syl2anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) =/= 0 ) | 
						
							| 21 | 16 14 20 | absdivd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) | 
						
							| 22 | 7 21 | eqtr4d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) ) | 
						
							| 24 | 16 | abscld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. CC ) | 
						
							| 26 | 25 14 20 | divcan2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) ) | 
						
							| 27 | 10 15 14 20 | divsubdird |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) ) | 
						
							| 28 | 9 13 17 | sqdivd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A / B ) ^ 2 ) ) | 
						
							| 30 | 11 | nnred |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. RR ) | 
						
							| 31 | 11 | nnnn0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN0 ) | 
						
							| 32 | 31 | nn0ge0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ D ) | 
						
							| 33 |  | remsqsqrt |  |-  ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) | 
						
							| 34 | 30 32 33 | syl2anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) | 
						
							| 35 | 30 32 | resqrtcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. RR ) | 
						
							| 36 | 35 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. CC ) | 
						
							| 37 | 36 | sqvald |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) ^ 2 ) = ( ( sqrt ` D ) x. ( sqrt ` D ) ) ) | 
						
							| 38 | 12 14 20 | divcan4d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = D ) | 
						
							| 39 | 34 37 38 | 3eqtr4rd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = ( ( sqrt ` D ) ^ 2 ) ) | 
						
							| 40 | 29 39 | oveq12d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) = ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) ) | 
						
							| 41 | 9 13 17 | divcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. CC ) | 
						
							| 42 |  | subsq |  |-  ( ( ( A / B ) e. CC /\ ( sqrt ` D ) e. CC ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) ) | 
						
							| 43 | 41 36 42 | syl2anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) ) | 
						
							| 44 | 41 36 | addcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) e. CC ) | 
						
							| 45 | 8 | nnred |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. RR ) | 
						
							| 46 | 45 1 | nndivred |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. RR ) | 
						
							| 47 | 46 35 | resubcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. RR ) | 
						
							| 48 | 47 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. CC ) | 
						
							| 49 | 44 48 | mulcomd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 50 | 43 49 | eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 51 | 27 40 50 | 3eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 52 | 51 | fveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 54 | 23 26 53 | 3eqtr3d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 55 | 48 44 | absmuld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 56 | 55 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 57 | 48 | abscld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR ) | 
						
							| 58 | 44 | abscld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR ) | 
						
							| 59 | 57 58 | remulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR ) | 
						
							| 60 | 3 59 | remulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR ) | 
						
							| 61 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 62 | 61 | nn0negzi |  |-  -u 2 e. ZZ | 
						
							| 63 | 62 | a1i |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> -u 2 e. ZZ ) | 
						
							| 64 | 2 17 63 | reexpclzd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. RR ) | 
						
							| 65 | 64 58 | remulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR ) | 
						
							| 66 | 3 65 | remulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR ) | 
						
							| 67 |  | 1red |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 e. RR ) | 
						
							| 68 |  | 2re |  |-  2 e. RR | 
						
							| 69 | 68 | a1i |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 2 e. RR ) | 
						
							| 70 | 69 35 | remulcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) | 
						
							| 71 | 67 70 | readdcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) | 
						
							| 72 |  | simpr |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) | 
						
							| 73 | 8 | nngt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < A ) | 
						
							| 74 | 1 | nngt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < B ) | 
						
							| 75 | 45 2 73 74 | divgt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( A / B ) ) | 
						
							| 76 | 11 | nngt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < D ) | 
						
							| 77 |  | sqrtgt0 |  |-  ( ( D e. RR /\ 0 < D ) -> 0 < ( sqrt ` D ) ) | 
						
							| 78 | 30 76 77 | syl2anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( sqrt ` D ) ) | 
						
							| 79 | 46 35 75 78 | addgt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( ( A / B ) + ( sqrt ` D ) ) ) | 
						
							| 80 | 79 | gt0ne0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) =/= 0 ) | 
						
							| 81 |  | absgt0 |  |-  ( ( ( A / B ) + ( sqrt ` D ) ) e. CC -> ( ( ( A / B ) + ( sqrt ` D ) ) =/= 0 <-> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 82 | 81 | biimpa |  |-  ( ( ( ( A / B ) + ( sqrt ` D ) ) e. CC /\ ( ( A / B ) + ( sqrt ` D ) ) =/= 0 ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 83 | 44 80 82 | syl2anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 84 |  | ltmul1 |  |-  ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR /\ ( B ^ -u 2 ) e. RR /\ ( ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR /\ 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 85 | 57 64 58 83 84 | syl112anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 86 | 72 85 | mpbid |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 87 | 2 17 | sqgt0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( B ^ 2 ) ) | 
						
							| 88 |  | ltmul2 |  |-  ( ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 89 | 59 65 3 87 88 | syl112anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) ) | 
						
							| 90 | 86 89 | mpbid |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 91 | 13 17 63 | expclzd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. CC ) | 
						
							| 92 | 58 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) | 
						
							| 93 |  | mulass |  |-  ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) | 
						
							| 94 | 93 | eqcomd |  |-  ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 95 | 14 91 92 94 | syl3anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 96 |  | expneg |  |-  ( ( B e. CC /\ 2 e. NN0 ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) ) | 
						
							| 97 | 13 61 96 | sylancl |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) ) | 
						
							| 98 | 97 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) ) | 
						
							| 99 | 14 20 | recidd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) = 1 ) | 
						
							| 100 | 98 99 | eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = 1 ) | 
						
							| 101 | 100 | oveq1d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) | 
						
							| 102 | 92 | mullidd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 103 | 95 101 102 | 3eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) | 
						
							| 104 | 41 36 | addcomd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( A / B ) ) ) | 
						
							| 105 |  | ppncan |  |-  ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( sqrt ` D ) + ( A / B ) ) ) | 
						
							| 106 | 105 | eqcomd |  |-  ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) ) | 
						
							| 107 | 36 36 41 106 | syl3anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) ) | 
						
							| 108 | 36 36 | addcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) e. CC ) | 
						
							| 109 | 108 48 | addcomd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) ) | 
						
							| 110 |  | 2times |  |-  ( ( sqrt ` D ) e. CC -> ( 2 x. ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( sqrt ` D ) ) ) | 
						
							| 111 | 110 | eqcomd |  |-  ( ( sqrt ` D ) e. CC -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) ) | 
						
							| 112 | 36 111 | syl |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 114 | 109 113 | eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 115 | 104 107 114 | 3eqtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 116 | 115 | fveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) ) | 
						
							| 117 | 47 70 | readdcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. RR ) | 
						
							| 118 | 117 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. CC ) | 
						
							| 119 | 118 | abscld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) | 
						
							| 120 | 70 | recnd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. CC ) | 
						
							| 121 | 120 | abscld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) e. RR ) | 
						
							| 122 | 57 121 | readdcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) | 
						
							| 123 | 48 120 | abstrid |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) ) | 
						
							| 124 |  | 0le2 |  |-  0 <_ 2 | 
						
							| 125 | 124 | a1i |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ 2 ) | 
						
							| 126 | 30 32 | sqrtge0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( sqrt ` D ) ) | 
						
							| 127 | 69 35 125 126 | mulge0d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( 2 x. ( sqrt ` D ) ) ) | 
						
							| 128 | 70 127 | absidd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) = ( 2 x. ( sqrt ` D ) ) ) | 
						
							| 129 | 128 | oveq2d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 130 | 1 | nnsqcld |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. NN ) | 
						
							| 131 | 130 | nnge1d |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 <_ ( B ^ 2 ) ) | 
						
							| 132 |  | 0lt1 |  |-  0 < 1 | 
						
							| 133 | 132 | a1i |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < 1 ) | 
						
							| 134 |  | lerec |  |-  ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) ) | 
						
							| 135 | 67 133 3 87 134 | syl22anc |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) ) | 
						
							| 136 | 131 135 | mpbid |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) | 
						
							| 137 |  | 1div1e1 |  |-  ( 1 / 1 ) = 1 | 
						
							| 138 | 136 137 | breqtrdi |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ 1 ) | 
						
							| 139 | 97 138 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) <_ 1 ) | 
						
							| 140 | 57 64 67 72 139 | ltletrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < 1 ) | 
						
							| 141 | 57 67 140 | ltled |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) <_ 1 ) | 
						
							| 142 | 57 67 70 141 | leadd1dd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 143 | 129 142 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 144 | 119 122 71 123 143 | letrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 145 | 116 144 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 146 | 103 145 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 147 | 60 66 71 90 146 | ltletrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 148 | 56 147 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) | 
						
							| 149 | 54 148 | eqbrtrd |  |-  ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |