| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl3 |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. NN ) |
| 2 |
1
|
nnred |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. RR ) |
| 3 |
2
|
resqcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. RR ) |
| 4 |
2
|
sqge0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( B ^ 2 ) ) |
| 5 |
3 4
|
absidd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 6 |
5
|
eqcomd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) = ( abs ` ( B ^ 2 ) ) ) |
| 7 |
6
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) |
| 8 |
|
simpl2 |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. NN ) |
| 9 |
8
|
nncnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. CC ) |
| 10 |
9
|
sqcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A ^ 2 ) e. CC ) |
| 11 |
|
simpl1 |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN ) |
| 12 |
11
|
nncnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. CC ) |
| 13 |
1
|
nncnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B e. CC ) |
| 14 |
13
|
sqcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. CC ) |
| 15 |
12 14
|
mulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( D x. ( B ^ 2 ) ) e. CC ) |
| 16 |
10 15
|
subcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) e. CC ) |
| 17 |
1
|
nnne0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> B =/= 0 ) |
| 18 |
|
sqne0 |
|- ( B e. CC -> ( ( B ^ 2 ) =/= 0 <-> B =/= 0 ) ) |
| 19 |
18
|
biimpar |
|- ( ( B e. CC /\ B =/= 0 ) -> ( B ^ 2 ) =/= 0 ) |
| 20 |
13 17 19
|
syl2anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) =/= 0 ) |
| 21 |
16 14 20
|
absdivd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( abs ` ( B ^ 2 ) ) ) ) |
| 22 |
7 21
|
eqtr4d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) = ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) |
| 23 |
22
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) ) |
| 24 |
16
|
abscld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. RR ) |
| 25 |
24
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) e. CC ) |
| 26 |
25 14 20
|
divcan2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) ) |
| 27 |
10 15 14 20
|
divsubdird |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) ) |
| 28 |
9 13 17
|
sqdivd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) ^ 2 ) = ( ( A ^ 2 ) / ( B ^ 2 ) ) ) |
| 29 |
28
|
eqcomd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A ^ 2 ) / ( B ^ 2 ) ) = ( ( A / B ) ^ 2 ) ) |
| 30 |
11
|
nnred |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. RR ) |
| 31 |
11
|
nnnn0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> D e. NN0 ) |
| 32 |
31
|
nn0ge0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ D ) |
| 33 |
|
remsqsqrt |
|- ( ( D e. RR /\ 0 <_ D ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) |
| 34 |
30 32 33
|
syl2anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) x. ( sqrt ` D ) ) = D ) |
| 35 |
30 32
|
resqrtcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. RR ) |
| 36 |
35
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( sqrt ` D ) e. CC ) |
| 37 |
36
|
sqvald |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) ^ 2 ) = ( ( sqrt ` D ) x. ( sqrt ` D ) ) ) |
| 38 |
12 14 20
|
divcan4d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = D ) |
| 39 |
34 37 38
|
3eqtr4rd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) = ( ( sqrt ` D ) ^ 2 ) ) |
| 40 |
29 39
|
oveq12d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) / ( B ^ 2 ) ) - ( ( D x. ( B ^ 2 ) ) / ( B ^ 2 ) ) ) = ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) ) |
| 41 |
9 13 17
|
divcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. CC ) |
| 42 |
|
subsq |
|- ( ( ( A / B ) e. CC /\ ( sqrt ` D ) e. CC ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) ) |
| 43 |
41 36 42
|
syl2anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) ) |
| 44 |
41 36
|
addcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) e. CC ) |
| 45 |
8
|
nnred |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> A e. RR ) |
| 46 |
45 1
|
nndivred |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( A / B ) e. RR ) |
| 47 |
46 35
|
resubcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. RR ) |
| 48 |
47
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) - ( sqrt ` D ) ) e. CC ) |
| 49 |
44 48
|
mulcomd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) + ( sqrt ` D ) ) x. ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 50 |
43 49
|
eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) ^ 2 ) - ( ( sqrt ` D ) ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 51 |
27 40 50
|
3eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 52 |
51
|
fveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 53 |
52
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) / ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 54 |
23 26 53
|
3eqtr3d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) = ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 55 |
48 44
|
absmuld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 56 |
55
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 57 |
48
|
abscld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR ) |
| 58 |
44
|
abscld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR ) |
| 59 |
57 58
|
remulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR ) |
| 60 |
3 59
|
remulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR ) |
| 61 |
|
2nn0 |
|- 2 e. NN0 |
| 62 |
61
|
nn0negzi |
|- -u 2 e. ZZ |
| 63 |
62
|
a1i |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> -u 2 e. ZZ ) |
| 64 |
2 17 63
|
reexpclzd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. RR ) |
| 65 |
64 58
|
remulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR ) |
| 66 |
3 65
|
remulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) e. RR ) |
| 67 |
|
1red |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 e. RR ) |
| 68 |
|
2re |
|- 2 e. RR |
| 69 |
68
|
a1i |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 2 e. RR ) |
| 70 |
69 35
|
remulcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. RR ) |
| 71 |
67 70
|
readdcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 + ( 2 x. ( sqrt ` D ) ) ) e. RR ) |
| 72 |
|
simpr |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) |
| 73 |
8
|
nngt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < A ) |
| 74 |
1
|
nngt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < B ) |
| 75 |
45 2 73 74
|
divgt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( A / B ) ) |
| 76 |
11
|
nngt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < D ) |
| 77 |
|
sqrtgt0 |
|- ( ( D e. RR /\ 0 < D ) -> 0 < ( sqrt ` D ) ) |
| 78 |
30 76 77
|
syl2anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( sqrt ` D ) ) |
| 79 |
46 35 75 78
|
addgt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( ( A / B ) + ( sqrt ` D ) ) ) |
| 80 |
79
|
gt0ne0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) =/= 0 ) |
| 81 |
|
absgt0 |
|- ( ( ( A / B ) + ( sqrt ` D ) ) e. CC -> ( ( ( A / B ) + ( sqrt ` D ) ) =/= 0 <-> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 82 |
81
|
biimpa |
|- ( ( ( ( A / B ) + ( sqrt ` D ) ) e. CC /\ ( ( A / B ) + ( sqrt ` D ) ) =/= 0 ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 83 |
44 80 82
|
syl2anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 84 |
|
ltmul1 |
|- ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) e. RR /\ ( B ^ -u 2 ) e. RR /\ ( ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. RR /\ 0 < ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 85 |
57 64 58 83 84
|
syl112anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) <-> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 86 |
72 85
|
mpbid |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 87 |
2 17
|
sqgt0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < ( B ^ 2 ) ) |
| 88 |
|
ltmul2 |
|- ( ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) e. RR /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) ) |
| 89 |
59 65 3 87 88
|
syl112anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) < ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) <-> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) ) |
| 90 |
86 89
|
mpbid |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 91 |
13 17 63
|
expclzd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) e. CC ) |
| 92 |
58
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) |
| 93 |
|
mulass |
|- ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) ) |
| 94 |
93
|
eqcomd |
|- ( ( ( B ^ 2 ) e. CC /\ ( B ^ -u 2 ) e. CC /\ ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) e. CC ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 95 |
14 91 92 94
|
syl3anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 96 |
|
expneg |
|- ( ( B e. CC /\ 2 e. NN0 ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) ) |
| 97 |
13 61 96
|
sylancl |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) = ( 1 / ( B ^ 2 ) ) ) |
| 98 |
97
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) ) |
| 99 |
14 20
|
recidd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( 1 / ( B ^ 2 ) ) ) = 1 ) |
| 100 |
98 99
|
eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) = 1 ) |
| 101 |
100
|
oveq1d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( B ^ 2 ) x. ( B ^ -u 2 ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) |
| 102 |
92
|
mullidd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 103 |
95 101 102
|
3eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) = ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) |
| 104 |
41 36
|
addcomd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( A / B ) ) ) |
| 105 |
|
ppncan |
|- ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( sqrt ` D ) + ( A / B ) ) ) |
| 106 |
105
|
eqcomd |
|- ( ( ( sqrt ` D ) e. CC /\ ( sqrt ` D ) e. CC /\ ( A / B ) e. CC ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) ) |
| 107 |
36 36 41 106
|
syl3anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( A / B ) ) = ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) ) |
| 108 |
36 36
|
addcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) e. CC ) |
| 109 |
108 48
|
addcomd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) ) |
| 110 |
|
2times |
|- ( ( sqrt ` D ) e. CC -> ( 2 x. ( sqrt ` D ) ) = ( ( sqrt ` D ) + ( sqrt ` D ) ) ) |
| 111 |
110
|
eqcomd |
|- ( ( sqrt ` D ) e. CC -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) ) |
| 112 |
36 111
|
syl |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( sqrt ` D ) + ( sqrt ` D ) ) = ( 2 x. ( sqrt ` D ) ) ) |
| 113 |
112
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( ( sqrt ` D ) + ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) |
| 114 |
109 113
|
eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( sqrt ` D ) + ( sqrt ` D ) ) + ( ( A / B ) - ( sqrt ` D ) ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) |
| 115 |
104 107 114
|
3eqtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( A / B ) + ( sqrt ` D ) ) = ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) |
| 116 |
115
|
fveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) = ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) ) |
| 117 |
47 70
|
readdcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. RR ) |
| 118 |
117
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) e. CC ) |
| 119 |
118
|
abscld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) |
| 120 |
70
|
recnd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 2 x. ( sqrt ` D ) ) e. CC ) |
| 121 |
120
|
abscld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) e. RR ) |
| 122 |
57 121
|
readdcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) e. RR ) |
| 123 |
48 120
|
abstrid |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) ) |
| 124 |
|
0le2 |
|- 0 <_ 2 |
| 125 |
124
|
a1i |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ 2 ) |
| 126 |
30 32
|
sqrtge0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( sqrt ` D ) ) |
| 127 |
69 35 125 126
|
mulge0d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 <_ ( 2 x. ( sqrt ` D ) ) ) |
| 128 |
70 127
|
absidd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( 2 x. ( sqrt ` D ) ) ) = ( 2 x. ( sqrt ` D ) ) ) |
| 129 |
128
|
oveq2d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) = ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) ) |
| 130 |
1
|
nnsqcld |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ 2 ) e. NN ) |
| 131 |
130
|
nnge1d |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 1 <_ ( B ^ 2 ) ) |
| 132 |
|
0lt1 |
|- 0 < 1 |
| 133 |
132
|
a1i |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> 0 < 1 ) |
| 134 |
|
lerec |
|- ( ( ( 1 e. RR /\ 0 < 1 ) /\ ( ( B ^ 2 ) e. RR /\ 0 < ( B ^ 2 ) ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) ) |
| 135 |
67 133 3 87 134
|
syl22anc |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 <_ ( B ^ 2 ) <-> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) ) |
| 136 |
131 135
|
mpbid |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ ( 1 / 1 ) ) |
| 137 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
| 138 |
136 137
|
breqtrdi |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( 1 / ( B ^ 2 ) ) <_ 1 ) |
| 139 |
97 138
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( B ^ -u 2 ) <_ 1 ) |
| 140 |
57 64 67 72 139
|
ltletrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < 1 ) |
| 141 |
57 67 140
|
ltled |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) <_ 1 ) |
| 142 |
57 67 70 141
|
leadd1dd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( 2 x. ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 143 |
129 142
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) + ( abs ` ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 144 |
119 122 71 123 143
|
letrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) + ( 2 x. ( sqrt ` D ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 145 |
116 144
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 146 |
103 145
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( B ^ -u 2 ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) <_ ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 147 |
60 66 71 90 146
|
ltletrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) x. ( abs ` ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 148 |
56 147
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( ( B ^ 2 ) x. ( abs ` ( ( ( A / B ) - ( sqrt ` D ) ) x. ( ( A / B ) + ( sqrt ` D ) ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |
| 149 |
54 148
|
eqbrtrd |
|- ( ( ( D e. NN /\ A e. NN /\ B e. NN ) /\ ( abs ` ( ( A / B ) - ( sqrt ` D ) ) ) < ( B ^ -u 2 ) ) -> ( abs ` ( ( A ^ 2 ) - ( D x. ( B ^ 2 ) ) ) ) < ( 1 + ( 2 x. ( sqrt ` D ) ) ) ) |