| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℂ ) | 
						
							| 2 | 1 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℂ ) | 
						
							| 3 | 2 | sqcld | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴 ↑ 2 )  ∈  ℂ ) | 
						
							| 4 |  | nncn | ⊢ ( 𝐷  ∈  ℕ  →  𝐷  ∈  ℂ ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐷  ∈  ℂ ) | 
						
							| 6 |  | nncn | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℂ ) | 
						
							| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℂ ) | 
						
							| 8 | 7 | sqcld | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐵 ↑ 2 )  ∈  ℂ ) | 
						
							| 9 | 5 8 | mulcld | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 10 | 3 9 | subeq0ad | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  0  ↔  ( 𝐴 ↑ 2 )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 11 |  | nnne0 | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ≠  0 ) | 
						
							| 12 | 11 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ≠  0 ) | 
						
							| 13 |  | sqne0 | ⊢ ( 𝐵  ∈  ℂ  →  ( ( 𝐵 ↑ 2 )  ≠  0  ↔  𝐵  ≠  0 ) ) | 
						
							| 14 | 7 13 | syl | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐵 ↑ 2 )  ≠  0  ↔  𝐵  ≠  0 ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐵 ↑ 2 )  ≠  0 ) | 
						
							| 16 | 3 5 8 15 | divmul3d | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) )  =  𝐷  ↔  ( 𝐴 ↑ 2 )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 17 |  | sqdiv | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( ( 𝐴  /  𝐵 ) ↑ 2 )  =  ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ  ∧  𝐵  ≠  0 )  →  ( √ ‘ ( ( 𝐴  /  𝐵 ) ↑ 2 ) )  =  ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 19 | 2 7 12 18 | syl3anc | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( √ ‘ ( ( 𝐴  /  𝐵 ) ↑ 2 ) )  =  ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) ) ) | 
						
							| 20 |  | nnre | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℝ ) | 
						
							| 21 | 20 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℝ ) | 
						
							| 22 |  | nnre | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℝ ) | 
						
							| 23 | 22 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℝ ) | 
						
							| 24 | 21 23 12 | redivcld | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 25 |  | nnnn0 | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℕ0 ) | 
						
							| 26 | 25 | nn0ge0d | ⊢ ( 𝐴  ∈  ℕ  →  0  ≤  𝐴 ) | 
						
							| 27 | 26 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  0  ≤  𝐴 ) | 
						
							| 28 |  | nngt0 | ⊢ ( 𝐵  ∈  ℕ  →  0  <  𝐵 ) | 
						
							| 29 | 28 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  0  <  𝐵 ) | 
						
							| 30 |  | divge0 | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  ∧  ( 𝐵  ∈  ℝ  ∧  0  <  𝐵 ) )  →  0  ≤  ( 𝐴  /  𝐵 ) ) | 
						
							| 31 | 21 27 23 29 30 | syl22anc | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  0  ≤  ( 𝐴  /  𝐵 ) ) | 
						
							| 32 | 24 31 | sqrtsqd | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( √ ‘ ( ( 𝐴  /  𝐵 ) ↑ 2 ) )  =  ( 𝐴  /  𝐵 ) ) | 
						
							| 33 | 19 32 | eqtr3d | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) )  =  ( 𝐴  /  𝐵 ) ) | 
						
							| 34 |  | nnq | ⊢ ( 𝐴  ∈  ℕ  →  𝐴  ∈  ℚ ) | 
						
							| 35 | 34 | 3ad2ant2 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐴  ∈  ℚ ) | 
						
							| 36 |  | nnq | ⊢ ( 𝐵  ∈  ℕ  →  𝐵  ∈  ℚ ) | 
						
							| 37 | 36 | 3ad2ant3 | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  𝐵  ∈  ℚ ) | 
						
							| 38 |  | qdivcl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐵  ∈  ℚ  ∧  𝐵  ≠  0 )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 39 | 35 37 12 38 | syl3anc | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( 𝐴  /  𝐵 )  ∈  ℚ ) | 
						
							| 40 | 33 39 | eqeltrd | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) )  ∈  ℚ ) | 
						
							| 41 |  | fveq2 | ⊢ ( ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) )  =  𝐷  →  ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) )  =  ( √ ‘ 𝐷 ) ) | 
						
							| 42 | 41 | eleq1d | ⊢ ( ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) )  =  𝐷  →  ( ( √ ‘ ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) ) )  ∈  ℚ  ↔  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 43 | 40 42 | syl5ibcom | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ( 𝐴 ↑ 2 )  /  ( 𝐵 ↑ 2 ) )  =  𝐷  →  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 44 | 16 43 | sylbird | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( 𝐴 ↑ 2 )  =  ( 𝐷  ·  ( 𝐵 ↑ 2 ) )  →  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 45 | 10 44 | sylbid | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  =  0  →  ( √ ‘ 𝐷 )  ∈  ℚ ) ) | 
						
							| 46 | 45 | necon3bd | ⊢ ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  →  ( ¬  ( √ ‘ 𝐷 )  ∈  ℚ  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  ≠  0 ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( 𝐷  ∈  ℕ  ∧  𝐴  ∈  ℕ  ∧  𝐵  ∈  ℕ )  ∧  ¬  ( √ ‘ 𝐷 )  ∈  ℚ )  →  ( ( 𝐴 ↑ 2 )  −  ( 𝐷  ·  ( 𝐵 ↑ 2 ) ) )  ≠  0 ) |