Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
2 |
1
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
3 |
2
|
sqcld |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
4 |
|
nncn |
⊢ ( 𝐷 ∈ ℕ → 𝐷 ∈ ℂ ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐷 ∈ ℂ ) |
6 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
8 |
7
|
sqcld |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
9 |
5 8
|
mulcld |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐷 · ( 𝐵 ↑ 2 ) ) ∈ ℂ ) |
10 |
3 9
|
subeq0ad |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 0 ↔ ( 𝐴 ↑ 2 ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
11 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
12 |
11
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
13 |
|
sqne0 |
⊢ ( 𝐵 ∈ ℂ → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) |
14 |
7 13
|
syl |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) ≠ 0 ↔ 𝐵 ≠ 0 ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ≠ 0 ) |
16 |
3 5 8 15
|
divmul3d |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = 𝐷 ↔ ( 𝐴 ↑ 2 ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ) |
17 |
|
sqdiv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( ( 𝐴 / 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) |
18 |
17
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) ) |
19 |
2 7 12 18
|
syl3anc |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) = ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) ) |
20 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
22 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
23 |
22
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
24 |
21 23 12
|
redivcld |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
25 |
|
nnnn0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℕ0 ) |
26 |
25
|
nn0ge0d |
⊢ ( 𝐴 ∈ ℕ → 0 ≤ 𝐴 ) |
27 |
26
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 ≤ 𝐴 ) |
28 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
29 |
28
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 < 𝐵 ) |
30 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
31 |
21 27 23 29 30
|
syl22anc |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
32 |
24 31
|
sqrtsqd |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( √ ‘ ( ( 𝐴 / 𝐵 ) ↑ 2 ) ) = ( 𝐴 / 𝐵 ) ) |
33 |
19 32
|
eqtr3d |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) = ( 𝐴 / 𝐵 ) ) |
34 |
|
nnq |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℚ ) |
35 |
34
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℚ ) |
36 |
|
nnq |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℚ ) |
37 |
36
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℚ ) |
38 |
|
qdivcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
39 |
35 37 12 38
|
syl3anc |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
40 |
33 39
|
eqeltrd |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) ∈ ℚ ) |
41 |
|
fveq2 |
⊢ ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = 𝐷 → ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) = ( √ ‘ 𝐷 ) ) |
42 |
41
|
eleq1d |
⊢ ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = 𝐷 → ( ( √ ‘ ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) ) ∈ ℚ ↔ ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
43 |
40 42
|
syl5ibcom |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) / ( 𝐵 ↑ 2 ) ) = 𝐷 → ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
44 |
16 43
|
sylbird |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 ↑ 2 ) = ( 𝐷 · ( 𝐵 ↑ 2 ) ) → ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
45 |
10 44
|
sylbid |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) = 0 → ( √ ‘ 𝐷 ) ∈ ℚ ) ) |
46 |
45
|
necon3bd |
⊢ ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ¬ ( √ ‘ 𝐷 ) ∈ ℚ → ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ≠ 0 ) ) |
47 |
46
|
imp |
⊢ ( ( ( 𝐷 ∈ ℕ ∧ 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) ∧ ¬ ( √ ‘ 𝐷 ) ∈ ℚ ) → ( ( 𝐴 ↑ 2 ) − ( 𝐷 · ( 𝐵 ↑ 2 ) ) ) ≠ 0 ) |