Metamath Proof Explorer


Theorem pellexlem1

Description: Lemma for pellex . Arithmetical core of pellexlem3, norm lower bound. This begins Dirichlet's proof of the Pell equation solution existence; the proof here follows theorem 62 of vandenDries p. 43. (Contributed by Stefan O'Rear, 14-Sep-2014)

Ref Expression
Assertion pellexlem1 D A B ¬ D A 2 D B 2 0

Proof

Step Hyp Ref Expression
1 nncn A A
2 1 3ad2ant2 D A B A
3 2 sqcld D A B A 2
4 nncn D D
5 4 3ad2ant1 D A B D
6 nncn B B
7 6 3ad2ant3 D A B B
8 7 sqcld D A B B 2
9 5 8 mulcld D A B D B 2
10 3 9 subeq0ad D A B A 2 D B 2 = 0 A 2 = D B 2
11 nnne0 B B 0
12 11 3ad2ant3 D A B B 0
13 sqne0 B B 2 0 B 0
14 7 13 syl D A B B 2 0 B 0
15 12 14 mpbird D A B B 2 0
16 3 5 8 15 divmul3d D A B A 2 B 2 = D A 2 = D B 2
17 sqdiv A B B 0 A B 2 = A 2 B 2
18 17 fveq2d A B B 0 A B 2 = A 2 B 2
19 2 7 12 18 syl3anc D A B A B 2 = A 2 B 2
20 nnre A A
21 20 3ad2ant2 D A B A
22 nnre B B
23 22 3ad2ant3 D A B B
24 21 23 12 redivcld D A B A B
25 nnnn0 A A 0
26 25 nn0ge0d A 0 A
27 26 3ad2ant2 D A B 0 A
28 nngt0 B 0 < B
29 28 3ad2ant3 D A B 0 < B
30 divge0 A 0 A B 0 < B 0 A B
31 21 27 23 29 30 syl22anc D A B 0 A B
32 24 31 sqrtsqd D A B A B 2 = A B
33 19 32 eqtr3d D A B A 2 B 2 = A B
34 nnq A A
35 34 3ad2ant2 D A B A
36 nnq B B
37 36 3ad2ant3 D A B B
38 qdivcl A B B 0 A B
39 35 37 12 38 syl3anc D A B A B
40 33 39 eqeltrd D A B A 2 B 2
41 fveq2 A 2 B 2 = D A 2 B 2 = D
42 41 eleq1d A 2 B 2 = D A 2 B 2 D
43 40 42 syl5ibcom D A B A 2 B 2 = D D
44 16 43 sylbird D A B A 2 = D B 2 D
45 10 44 sylbid D A B A 2 D B 2 = 0 D
46 45 necon3bd D A B ¬ D A 2 D B 2 0
47 46 imp D A B ¬ D A 2 D B 2 0