| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
pgpfac.c |
⊢ 𝐶 = { 𝑟 ∈ ( SubGrp ‘ 𝐺 ) ∣ ( 𝐺 ↾s 𝑟 ) ∈ ( CycGrp ∩ ran pGrp ) } |
| 3 |
|
pgpfac.g |
⊢ ( 𝜑 → 𝐺 ∈ Abel ) |
| 4 |
|
pgpfac.p |
⊢ ( 𝜑 → 𝑃 pGrp 𝐺 ) |
| 5 |
|
pgpfac.f |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
| 6 |
|
ablgrp |
⊢ ( 𝐺 ∈ Abel → 𝐺 ∈ Grp ) |
| 7 |
1
|
subgid |
⊢ ( 𝐺 ∈ Grp → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 8 |
3 6 7
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 9 |
|
eleq1 |
⊢ ( 𝑡 = 𝑢 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 10 |
|
eqeq2 |
⊢ ( 𝑡 = 𝑢 → ( ( 𝐺 DProd 𝑠 ) = 𝑡 ↔ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) |
| 11 |
10
|
anbi2d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝑡 = 𝑢 → ( ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) |
| 13 |
9 12
|
imbi12d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ↔ ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) |
| 14 |
13
|
imbi2d |
⊢ ( 𝑡 = 𝑢 → ( ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ↔ ( 𝜑 → ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) ) |
| 15 |
|
eleq1 |
⊢ ( 𝑡 = 𝐵 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ↔ 𝐵 ∈ ( SubGrp ‘ 𝐺 ) ) ) |
| 16 |
|
eqeq2 |
⊢ ( 𝑡 = 𝐵 → ( ( 𝐺 DProd 𝑠 ) = 𝑡 ↔ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) |
| 17 |
16
|
anbi2d |
⊢ ( 𝑡 = 𝐵 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑡 = 𝐵 → ( ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) |
| 19 |
15 18
|
imbi12d |
⊢ ( 𝑡 = 𝐵 → ( ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ↔ ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑡 = 𝐵 → ( ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ↔ ( 𝜑 → ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) ) ) |
| 21 |
|
bi2.04 |
⊢ ( ( 𝑡 ⊊ 𝑢 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ↔ ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) |
| 22 |
21
|
imbi2i |
⊢ ( ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 23 |
|
bi2.04 |
⊢ ( ( 𝑡 ⊊ 𝑢 → ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 24 |
|
bi2.04 |
⊢ ( ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 25 |
22 23 24
|
3bitr4i |
⊢ ( ( 𝑡 ⊊ 𝑢 → ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 26 |
25
|
albii |
⊢ ( ∀ 𝑡 ( 𝑡 ⊊ 𝑢 → ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 27 |
|
df-ral |
⊢ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ↔ ∀ 𝑡 ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ) |
| 28 |
|
r19.21v |
⊢ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝜑 → ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) |
| 29 |
26 27 28
|
3bitr2i |
⊢ ( ∀ 𝑡 ( 𝑡 ⊊ 𝑢 → ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) ↔ ( 𝜑 → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) |
| 30 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐺 ∈ Abel ) |
| 31 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑃 pGrp 𝐺 ) |
| 32 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝐵 ∈ Fin ) |
| 33 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 34 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) |
| 35 |
|
psseq1 |
⊢ ( 𝑡 = 𝑥 → ( 𝑡 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢 ) ) |
| 36 |
|
eqeq2 |
⊢ ( 𝑡 = 𝑥 → ( ( 𝐺 DProd 𝑠 ) = 𝑡 ↔ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) |
| 37 |
36
|
anbi2d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) ) |
| 38 |
37
|
rexbidv |
⊢ ( 𝑡 = 𝑥 → ( ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ↔ ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) ) |
| 39 |
35 38
|
imbi12d |
⊢ ( 𝑡 = 𝑥 → ( ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ↔ ( 𝑥 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) ) ) |
| 40 |
39
|
cbvralvw |
⊢ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ↔ ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑥 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) ) |
| 41 |
34 40
|
sylib |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ∀ 𝑥 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑥 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑥 ) ) ) |
| 42 |
1 2 30 31 32 33 41
|
pgpfaclem3 |
⊢ ( ( 𝜑 ∧ ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ∧ 𝑢 ∈ ( SubGrp ‘ 𝐺 ) ) ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) |
| 43 |
42
|
exp32 |
⊢ ( 𝜑 → ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) → ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) |
| 44 |
43
|
a1i |
⊢ ( 𝑢 ∈ Fin → ( 𝜑 → ( ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) → ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) ) |
| 45 |
44
|
a2d |
⊢ ( 𝑢 ∈ Fin → ( ( 𝜑 → ∀ 𝑡 ∈ ( SubGrp ‘ 𝐺 ) ( 𝑡 ⊊ 𝑢 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) → ( 𝜑 → ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) ) |
| 46 |
29 45
|
biimtrid |
⊢ ( 𝑢 ∈ Fin → ( ∀ 𝑡 ( 𝑡 ⊊ 𝑢 → ( 𝜑 → ( 𝑡 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑡 ) ) ) ) → ( 𝜑 → ( 𝑢 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝑢 ) ) ) ) ) |
| 47 |
14 20 46
|
findcard3 |
⊢ ( 𝐵 ∈ Fin → ( 𝜑 → ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) ) |
| 48 |
5 47
|
mpcom |
⊢ ( 𝜑 → ( 𝐵 ∈ ( SubGrp ‘ 𝐺 ) → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) ) |
| 49 |
8 48
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ Word 𝐶 ( 𝐺 dom DProd 𝑠 ∧ ( 𝐺 DProd 𝑠 ) = 𝐵 ) ) |