Metamath Proof Explorer


Theorem pgpfac

Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 . There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses pgpfac.b B=BaseG
pgpfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
pgpfac.g φGAbel
pgpfac.p φPpGrpG
pgpfac.f φBFin
Assertion pgpfac φsWordCGdomDProdsGDProds=B

Proof

Step Hyp Ref Expression
1 pgpfac.b B=BaseG
2 pgpfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
3 pgpfac.g φGAbel
4 pgpfac.p φPpGrpG
5 pgpfac.f φBFin
6 ablgrp GAbelGGrp
7 1 subgid GGrpBSubGrpG
8 3 6 7 3syl φBSubGrpG
9 eleq1 t=utSubGrpGuSubGrpG
10 eqeq2 t=uGDProds=tGDProds=u
11 10 anbi2d t=uGdomDProdsGDProds=tGdomDProdsGDProds=u
12 11 rexbidv t=usWordCGdomDProdsGDProds=tsWordCGdomDProdsGDProds=u
13 9 12 imbi12d t=utSubGrpGsWordCGdomDProdsGDProds=tuSubGrpGsWordCGdomDProdsGDProds=u
14 13 imbi2d t=uφtSubGrpGsWordCGdomDProdsGDProds=tφuSubGrpGsWordCGdomDProdsGDProds=u
15 eleq1 t=BtSubGrpGBSubGrpG
16 eqeq2 t=BGDProds=tGDProds=B
17 16 anbi2d t=BGdomDProdsGDProds=tGdomDProdsGDProds=B
18 17 rexbidv t=BsWordCGdomDProdsGDProds=tsWordCGdomDProdsGDProds=B
19 15 18 imbi12d t=BtSubGrpGsWordCGdomDProdsGDProds=tBSubGrpGsWordCGdomDProdsGDProds=B
20 19 imbi2d t=BφtSubGrpGsWordCGdomDProdsGDProds=tφBSubGrpGsWordCGdomDProdsGDProds=B
21 bi2.04 tutSubGrpGsWordCGdomDProdsGDProds=ttSubGrpGtusWordCGdomDProdsGDProds=t
22 21 imbi2i φtutSubGrpGsWordCGdomDProdsGDProds=tφtSubGrpGtusWordCGdomDProdsGDProds=t
23 bi2.04 tuφtSubGrpGsWordCGdomDProdsGDProds=tφtutSubGrpGsWordCGdomDProdsGDProds=t
24 bi2.04 tSubGrpGφtusWordCGdomDProdsGDProds=tφtSubGrpGtusWordCGdomDProdsGDProds=t
25 22 23 24 3bitr4i tuφtSubGrpGsWordCGdomDProdsGDProds=ttSubGrpGφtusWordCGdomDProdsGDProds=t
26 25 albii ttuφtSubGrpGsWordCGdomDProdsGDProds=tttSubGrpGφtusWordCGdomDProdsGDProds=t
27 df-ral tSubGrpGφtusWordCGdomDProdsGDProds=tttSubGrpGφtusWordCGdomDProdsGDProds=t
28 r19.21v tSubGrpGφtusWordCGdomDProdsGDProds=tφtSubGrpGtusWordCGdomDProdsGDProds=t
29 26 27 28 3bitr2i ttuφtSubGrpGsWordCGdomDProdsGDProds=tφtSubGrpGtusWordCGdomDProdsGDProds=t
30 3 adantr φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGGAbel
31 4 adantr φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGPpGrpG
32 5 adantr φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGBFin
33 simprr φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGuSubGrpG
34 simprl φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGtSubGrpGtusWordCGdomDProdsGDProds=t
35 psseq1 t=xtuxu
36 eqeq2 t=xGDProds=tGDProds=x
37 36 anbi2d t=xGdomDProdsGDProds=tGdomDProdsGDProds=x
38 37 rexbidv t=xsWordCGdomDProdsGDProds=tsWordCGdomDProdsGDProds=x
39 35 38 imbi12d t=xtusWordCGdomDProdsGDProds=txusWordCGdomDProdsGDProds=x
40 39 cbvralvw tSubGrpGtusWordCGdomDProdsGDProds=txSubGrpGxusWordCGdomDProdsGDProds=x
41 34 40 sylib φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGxSubGrpGxusWordCGdomDProdsGDProds=x
42 1 2 30 31 32 33 41 pgpfaclem3 φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGsWordCGdomDProdsGDProds=u
43 42 exp32 φtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGsWordCGdomDProdsGDProds=u
44 43 a1i uFinφtSubGrpGtusWordCGdomDProdsGDProds=tuSubGrpGsWordCGdomDProdsGDProds=u
45 44 a2d uFinφtSubGrpGtusWordCGdomDProdsGDProds=tφuSubGrpGsWordCGdomDProdsGDProds=u
46 29 45 biimtrid uFinttuφtSubGrpGsWordCGdomDProdsGDProds=tφuSubGrpGsWordCGdomDProdsGDProds=u
47 14 20 46 findcard3 BFinφBSubGrpGsWordCGdomDProdsGDProds=B
48 5 47 mpcom φBSubGrpGsWordCGdomDProdsGDProds=B
49 8 48 mpd φsWordCGdomDProdsGDProds=B