Description: Full factorization of a finite abelian p-group, by iterating pgpfac1 . There is a direct product decomposition of any abelian group of prime-power order into cyclic subgroups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | pgpfac.b | |
|
pgpfac.c | |
||
pgpfac.g | |
||
pgpfac.p | |
||
pgpfac.f | |
||
Assertion | pgpfac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pgpfac.b | |
|
2 | pgpfac.c | |
|
3 | pgpfac.g | |
|
4 | pgpfac.p | |
|
5 | pgpfac.f | |
|
6 | ablgrp | |
|
7 | 1 | subgid | |
8 | 3 6 7 | 3syl | |
9 | eleq1 | |
|
10 | eqeq2 | |
|
11 | 10 | anbi2d | |
12 | 11 | rexbidv | |
13 | 9 12 | imbi12d | |
14 | 13 | imbi2d | |
15 | eleq1 | |
|
16 | eqeq2 | |
|
17 | 16 | anbi2d | |
18 | 17 | rexbidv | |
19 | 15 18 | imbi12d | |
20 | 19 | imbi2d | |
21 | bi2.04 | |
|
22 | 21 | imbi2i | |
23 | bi2.04 | |
|
24 | bi2.04 | |
|
25 | 22 23 24 | 3bitr4i | |
26 | 25 | albii | |
27 | df-ral | |
|
28 | r19.21v | |
|
29 | 26 27 28 | 3bitr2i | |
30 | 3 | adantr | |
31 | 4 | adantr | |
32 | 5 | adantr | |
33 | simprr | |
|
34 | simprl | |
|
35 | psseq1 | |
|
36 | eqeq2 | |
|
37 | 36 | anbi2d | |
38 | 37 | rexbidv | |
39 | 35 38 | imbi12d | |
40 | 39 | cbvralvw | |
41 | 34 40 | sylib | |
42 | 1 2 30 31 32 33 41 | pgpfaclem3 | |
43 | 42 | exp32 | |
44 | 43 | a1i | |
45 | 44 | a2d | |
46 | 29 45 | biimtrid | |
47 | 14 20 46 | findcard3 | |
48 | 5 47 | mpcom | |
49 | 8 48 | mpd | |