Metamath Proof Explorer


Theorem findcard3

Description: Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013) Avoid ax-pow . (Revised by BTernaryTau, 7-Jan-2025)

Ref Expression
Hypotheses findcard3.1 x=yφχ
findcard3.2 x=Aφτ
findcard3.3 yFinxxyφχ
Assertion findcard3 AFinτ

Proof

Step Hyp Ref Expression
1 findcard3.1 x=yφχ
2 findcard3.2 x=Aφτ
3 findcard3.3 yFinxxyφχ
4 isfi AFinwωAw
5 nnon wωwOn
6 eleq1w w=zwωzω
7 breq2 w=zxwxz
8 7 imbi1d w=zxwφxzφ
9 8 albidv w=zxxwφxxzφ
10 6 9 imbi12d w=zwωxxwφzωxxzφ
11 rspe wωywwωyw
12 isfi yFinwωyw
13 11 12 sylibr wωywyFin
14 19.21v xzωxzφzωxxzφ
15 14 ralbii zwxzωxzφzwzωxxzφ
16 ralcom4 zwxzωxzφxzwzωxzφ
17 15 16 bitr3i zwzωxxzφxzwzωxzφ
18 pssss xyxy
19 ssfi yFinxyxFin
20 isfi xFinzωxz
21 19 20 sylib yFinxyzωxz
22 13 18 21 syl2an wωywxyzωxz
23 simprl wωywxyzωxzzω
24 nnfi zωzFin
25 ensymfib zFinzxxz
26 24 25 syl zωzxxz
27 26 biimpar zωxzzx
28 27 adantl wωywxyzωxzzx
29 simplll wωywxyzωxzwω
30 php3 yFinxyxy
31 13 30 sylan wωywxyxy
32 31 adantr wωywxyzωxzxy
33 simpllr wωywxyzωxzyw
34 endom ywyw
35 nnfi wωwFin
36 domfi wFinywyFin
37 35 36 sylan wωywyFin
38 37 3adant2 wωxyywyFin
39 sdomdom xyxy
40 domfi yFinxyxFin
41 39 40 sylan2 yFinxyxFin
42 41 3adant3 yFinxyywxFin
43 38 42 syld3an1 wωxyywxFin
44 sdomdomtrfi xFinxyywxw
45 43 44 syld3an1 wωxyywxw
46 34 45 syl3an3 wωxyywxw
47 29 32 33 46 syl3anc wωywxyzωxzxw
48 endom zxzx
49 domsdomtrfi zFinzxxwzw
50 24 49 syl3an1 zωzxxwzw
51 48 50 syl3an2 zωzxxwzw
52 23 28 47 51 syl3anc wωywxyzωxzzw
53 nnsdomo zωwωzwzw
54 nnord zωOrdz
55 nnord wωOrdw
56 ordelpss OrdzOrdwzwzw
57 54 55 56 syl2an zωwωzwzw
58 53 57 bitr4d zωwωzwzw
59 23 29 58 syl2anc wωywxyzωxzzwzw
60 52 59 mpbid wωywxyzωxzzw
61 60 ex wωywxyzωxzzw
62 simpr zωxzxz
63 61 62 jca2 wωywxyzωxzzwxz
64 63 reximdv2 wωywxyzωxzzwxz
65 22 64 mpd wωywxyzwxz
66 r19.29 zwzωxzφzwxzzwzωxzφxz
67 66 expcom zwxzzwzωxzφzwzωxzφxz
68 65 67 syl wωywxyzwzωxzφzwzωxzφxz
69 ordom Ordω
70 ordelss Ordωwωwω
71 69 70 mpan wωwω
72 71 ad2antrr wωywxywω
73 72 sseld wωywxyzwzω
74 pm2.27 zωzωxzφxzφ
75 74 impd zωzωxzφxzφ
76 73 75 syl6 wωywxyzwzωxzφxzφ
77 76 rexlimdv wωywxyzwzωxzφxzφ
78 68 77 syld wωywxyzwzωxzφφ
79 78 ex wωywxyzwzωxzφφ
80 79 com23 wωywzwzωxzφxyφ
81 80 alimdv wωywxzwzωxzφxxyφ
82 17 81 biimtrid wωywzwzωxxzφxxyφ
83 13 82 3 sylsyld wωywzwzωxxzφχ
84 83 impancom wωzwzωxxzφywχ
85 84 alrimiv wωzwzωxxzφyywχ
86 85 expcom zwzωxxzφwωyywχ
87 breq1 x=yxwyw
88 87 1 imbi12d x=yxwφywχ
89 88 cbvalvw xxwφyywχ
90 86 89 imbitrrdi zwzωxxzφwωxxwφ
91 90 a1i wOnzwzωxxzφwωxxwφ
92 10 91 tfis2 wOnwωxxwφ
93 5 92 mpcom wωxxwφ
94 93 rgen wωxxwφ
95 r19.29 wωxxwφwωAwwωxxwφAw
96 94 95 mpan wωAwwωxxwφAw
97 4 96 sylbi AFinwωxxwφAw
98 breq1 x=AxwAw
99 98 2 imbi12d x=AxwφAwτ
100 99 spcgv AFinxxwφAwτ
101 100 impd AFinxxwφAwτ
102 101 rexlimdvw AFinwωxxwφAwτ
103 97 102 mpd AFinτ