Metamath Proof Explorer


Theorem ablfaclem1

Description: Lemma for ablfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B=BaseG
ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
ablfac.1 φGAbel
ablfac.2 φBFin
ablfac.o O=odG
ablfac.a A=w|wB
ablfac.s S=pAxB|OxpppCntB
ablfac.w W=gSubGrpGsWordC|GdomDProdsGDProds=g
Assertion ablfaclem1 USubGrpGWU=sWordC|GdomDProdsGDProds=U

Proof

Step Hyp Ref Expression
1 ablfac.b B=BaseG
2 ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
3 ablfac.1 φGAbel
4 ablfac.2 φBFin
5 ablfac.o O=odG
6 ablfac.a A=w|wB
7 ablfac.s S=pAxB|OxpppCntB
8 ablfac.w W=gSubGrpGsWordC|GdomDProdsGDProds=g
9 eqeq2 g=UGDProds=gGDProds=U
10 9 anbi2d g=UGdomDProdsGDProds=gGdomDProdsGDProds=U
11 10 rabbidv g=UsWordC|GdomDProdsGDProds=g=sWordC|GdomDProdsGDProds=U
12 fvex SubGrpGV
13 2 12 rabex2 CV
14 13 wrdexi WordCV
15 14 rabex sWordC|GdomDProdsGDProds=UV
16 11 8 15 fvmpt USubGrpGWU=sWordC|GdomDProdsGDProds=U