Metamath Proof Explorer


Theorem ablfac

Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B=BaseG
ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
ablfac.1 φGAbel
ablfac.2 φBFin
Assertion ablfac φsWordCGdomDProdsGDProds=B

Proof

Step Hyp Ref Expression
1 ablfac.b B=BaseG
2 ablfac.c C=rSubGrpG|G𝑠rCycGrpranpGrp
3 ablfac.1 φGAbel
4 ablfac.2 φBFin
5 ablgrp GAbelGGrp
6 1 subgid GGrpBSubGrpG
7 eqid odG=odG
8 eqid w|wB=w|wB
9 eqid pw|wBxB|odGxpppCntB=pw|wBxB|odGxpppCntB
10 eqid gSubGrpGsWordC|GdomDProdsGDProds=g=gSubGrpGsWordC|GdomDProdsGDProds=g
11 1 2 3 4 7 8 9 10 ablfaclem1 BSubGrpGgSubGrpGsWordC|GdomDProdsGDProds=gB=sWordC|GdomDProdsGDProds=B
12 3 5 6 11 4syl φgSubGrpGsWordC|GdomDProdsGDProds=gB=sWordC|GdomDProdsGDProds=B
13 1 2 3 4 7 8 9 10 ablfaclem3 φgSubGrpGsWordC|GdomDProdsGDProds=gB
14 12 13 eqnetrrd φsWordC|GdomDProdsGDProds=B
15 rabn0 sWordC|GdomDProdsGDProds=BsWordCGdomDProdsGDProds=B
16 14 15 sylib φsWordCGdomDProdsGDProds=B