Metamath Proof Explorer


Theorem ablfac

Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B = Base G
ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
ablfac.1 φ G Abel
ablfac.2 φ B Fin
Assertion ablfac φ s Word C G dom DProd s G DProd s = B

Proof

Step Hyp Ref Expression
1 ablfac.b B = Base G
2 ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 ablfac.1 φ G Abel
4 ablfac.2 φ B Fin
5 ablgrp G Abel G Grp
6 1 subgid G Grp B SubGrp G
7 eqid od G = od G
8 eqid w | w B = w | w B
9 eqid p w | w B x B | od G x p p pCnt B = p w | w B x B | od G x p p pCnt B
10 eqid g SubGrp G s Word C | G dom DProd s G DProd s = g = g SubGrp G s Word C | G dom DProd s G DProd s = g
11 1 2 3 4 7 8 9 10 ablfaclem1 B SubGrp G g SubGrp G s Word C | G dom DProd s G DProd s = g B = s Word C | G dom DProd s G DProd s = B
12 3 5 6 11 4syl φ g SubGrp G s Word C | G dom DProd s G DProd s = g B = s Word C | G dom DProd s G DProd s = B
13 1 2 3 4 7 8 9 10 ablfaclem3 φ g SubGrp G s Word C | G dom DProd s G DProd s = g B
14 12 13 eqnetrrd φ s Word C | G dom DProd s G DProd s = B
15 rabn0 s Word C | G dom DProd s G DProd s = B s Word C G dom DProd s G DProd s = B
16 14 15 sylib φ s Word C G dom DProd s G DProd s = B