Description: The Fundamental Theorem of (finite) Abelian Groups. Any finite abelian group is a direct product of cyclic p-groups. (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ablfac.b | |
|
ablfac.c | |
||
ablfac.1 | |
||
ablfac.2 | |
||
Assertion | ablfac | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ablfac.b | |
|
2 | ablfac.c | |
|
3 | ablfac.1 | |
|
4 | ablfac.2 | |
|
5 | ablgrp | |
|
6 | 1 | subgid | |
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | eqid | |
|
11 | 1 2 3 4 7 8 9 10 | ablfaclem1 | |
12 | 3 5 6 11 | 4syl | |
13 | 1 2 3 4 7 8 9 10 | ablfaclem3 | |
14 | 12 13 | eqnetrrd | |
15 | rabn0 | |
|
16 | 14 15 | sylib | |