| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pgpfac.b |
|- B = ( Base ` G ) |
| 2 |
|
pgpfac.c |
|- C = { r e. ( SubGrp ` G ) | ( G |`s r ) e. ( CycGrp i^i ran pGrp ) } |
| 3 |
|
pgpfac.g |
|- ( ph -> G e. Abel ) |
| 4 |
|
pgpfac.p |
|- ( ph -> P pGrp G ) |
| 5 |
|
pgpfac.f |
|- ( ph -> B e. Fin ) |
| 6 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
| 7 |
1
|
subgid |
|- ( G e. Grp -> B e. ( SubGrp ` G ) ) |
| 8 |
3 6 7
|
3syl |
|- ( ph -> B e. ( SubGrp ` G ) ) |
| 9 |
|
eleq1 |
|- ( t = u -> ( t e. ( SubGrp ` G ) <-> u e. ( SubGrp ` G ) ) ) |
| 10 |
|
eqeq2 |
|- ( t = u -> ( ( G DProd s ) = t <-> ( G DProd s ) = u ) ) |
| 11 |
10
|
anbi2d |
|- ( t = u -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = u ) ) ) |
| 12 |
11
|
rexbidv |
|- ( t = u -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) |
| 13 |
9 12
|
imbi12d |
|- ( t = u -> ( ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) |
| 14 |
13
|
imbi2d |
|- ( t = u -> ( ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
| 15 |
|
eleq1 |
|- ( t = B -> ( t e. ( SubGrp ` G ) <-> B e. ( SubGrp ` G ) ) ) |
| 16 |
|
eqeq2 |
|- ( t = B -> ( ( G DProd s ) = t <-> ( G DProd s ) = B ) ) |
| 17 |
16
|
anbi2d |
|- ( t = B -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
| 18 |
17
|
rexbidv |
|- ( t = B -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
| 19 |
15 18
|
imbi12d |
|- ( t = B -> ( ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) |
| 20 |
19
|
imbi2d |
|- ( t = B -> ( ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) ) |
| 21 |
|
bi2.04 |
|- ( ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
| 22 |
21
|
imbi2i |
|- ( ( ph -> ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 23 |
|
bi2.04 |
|- ( ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t C. u -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 24 |
|
bi2.04 |
|- ( ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> ( t e. ( SubGrp ` G ) -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 25 |
22 23 24
|
3bitr4i |
|- ( ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 26 |
25
|
albii |
|- ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> A. t ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 27 |
|
df-ral |
|- ( A. t e. ( SubGrp ` G ) ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> A. t ( t e. ( SubGrp ` G ) -> ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) ) |
| 28 |
|
r19.21v |
|- ( A. t e. ( SubGrp ` G ) ( ph -> ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) <-> ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
| 29 |
26 27 28
|
3bitr2i |
|- ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) <-> ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) |
| 30 |
3
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> G e. Abel ) |
| 31 |
4
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> P pGrp G ) |
| 32 |
5
|
adantr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> B e. Fin ) |
| 33 |
|
simprr |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> u e. ( SubGrp ` G ) ) |
| 34 |
|
simprl |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) |
| 35 |
|
psseq1 |
|- ( t = x -> ( t C. u <-> x C. u ) ) |
| 36 |
|
eqeq2 |
|- ( t = x -> ( ( G DProd s ) = t <-> ( G DProd s ) = x ) ) |
| 37 |
36
|
anbi2d |
|- ( t = x -> ( ( G dom DProd s /\ ( G DProd s ) = t ) <-> ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
| 38 |
37
|
rexbidv |
|- ( t = x -> ( E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) <-> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
| 39 |
35 38
|
imbi12d |
|- ( t = x -> ( ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) ) |
| 40 |
39
|
cbvralvw |
|- ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) <-> A. x e. ( SubGrp ` G ) ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
| 41 |
34 40
|
sylib |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> A. x e. ( SubGrp ` G ) ( x C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = x ) ) ) |
| 42 |
1 2 30 31 32 33 41
|
pgpfaclem3 |
|- ( ( ph /\ ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) /\ u e. ( SubGrp ` G ) ) ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) |
| 43 |
42
|
exp32 |
|- ( ph -> ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) |
| 44 |
43
|
a1i |
|- ( u e. Fin -> ( ph -> ( A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
| 45 |
44
|
a2d |
|- ( u e. Fin -> ( ( ph -> A. t e. ( SubGrp ` G ) ( t C. u -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) -> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
| 46 |
29 45
|
biimtrid |
|- ( u e. Fin -> ( A. t ( t C. u -> ( ph -> ( t e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = t ) ) ) ) -> ( ph -> ( u e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = u ) ) ) ) ) |
| 47 |
14 20 46
|
findcard3 |
|- ( B e. Fin -> ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) ) |
| 48 |
5 47
|
mpcom |
|- ( ph -> ( B e. ( SubGrp ` G ) -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) ) |
| 49 |
8 48
|
mpd |
|- ( ph -> E. s e. Word C ( G dom DProd s /\ ( G DProd s ) = B ) ) |