| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmtr3ncom.t |
⊢ 𝑇 = ( pmTrsp ‘ 𝐷 ) |
| 2 |
|
pmtr3ncom.f |
⊢ 𝐹 = ( 𝑇 ‘ { 𝑋 , 𝑌 } ) |
| 3 |
|
pmtr3ncom.g |
⊢ 𝐺 = ( 𝑇 ‘ { 𝑌 , 𝑍 } ) |
| 4 |
|
necom |
⊢ ( 𝑌 ≠ 𝑍 ↔ 𝑍 ≠ 𝑌 ) |
| 5 |
4
|
biimpi |
⊢ ( 𝑌 ≠ 𝑍 → 𝑍 ≠ 𝑌 ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → 𝑍 ≠ 𝑌 ) |
| 7 |
6
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑍 ≠ 𝑌 ) |
| 8 |
|
simp1 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐷 ∈ 𝑉 ) |
| 9 |
|
simp1 |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → 𝑋 ∈ 𝐷 ) |
| 10 |
9
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑋 ∈ 𝐷 ) |
| 11 |
|
simp2 |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → 𝑌 ∈ 𝐷 ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑌 ∈ 𝐷 ) |
| 13 |
10 12
|
prssd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑋 , 𝑌 } ⊆ 𝐷 ) |
| 14 |
|
simp1 |
⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → 𝑋 ≠ 𝑌 ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑋 ≠ 𝑌 ) |
| 16 |
|
enpr2 |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ≈ 2o ) |
| 17 |
10 12 15 16
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑋 , 𝑌 } ≈ 2o ) |
| 18 |
1
|
pmtrf |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝑋 , 𝑌 } ⊆ 𝐷 ∧ { 𝑋 , 𝑌 } ≈ 2o ) → ( 𝑇 ‘ { 𝑋 , 𝑌 } ) : 𝐷 ⟶ 𝐷 ) |
| 19 |
8 13 17 18
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝑇 ‘ { 𝑋 , 𝑌 } ) : 𝐷 ⟶ 𝐷 ) |
| 20 |
2
|
feq1i |
⊢ ( 𝐹 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ { 𝑋 , 𝑌 } ) : 𝐷 ⟶ 𝐷 ) |
| 21 |
19 20
|
sylibr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐹 : 𝐷 ⟶ 𝐷 ) |
| 22 |
21
|
ffnd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐹 Fn 𝐷 ) |
| 23 |
|
fvco2 |
⊢ ( ( 𝐹 Fn 𝐷 ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 24 |
22 10 23
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) ) ) |
| 25 |
2
|
fveq1i |
⊢ ( 𝐹 ‘ 𝑋 ) = ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) |
| 26 |
10 12 15
|
3jca |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) |
| 27 |
1
|
pmtrprfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑋 ≠ 𝑌 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = 𝑌 ) |
| 28 |
8 26 27
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑋 , 𝑌 } ) ‘ 𝑋 ) = 𝑌 ) |
| 29 |
25 28
|
eqtrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐹 ‘ 𝑋 ) = 𝑌 ) |
| 30 |
29
|
fveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝐺 ‘ 𝑌 ) ) |
| 31 |
3
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑌 ) = ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑌 ) |
| 32 |
|
simp3 |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → 𝑍 ∈ 𝐷 ) |
| 33 |
32
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑍 ∈ 𝐷 ) |
| 34 |
|
simp3 |
⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → 𝑌 ≠ 𝑍 ) |
| 35 |
34
|
3ad2ant3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝑌 ≠ 𝑍 ) |
| 36 |
12 33 35
|
3jca |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑌 ≠ 𝑍 ) ) |
| 37 |
1
|
pmtrprfv |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑌 ) = 𝑍 ) |
| 38 |
8 36 37
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑌 ) = 𝑍 ) |
| 39 |
31 38
|
eqtrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ‘ 𝑌 ) = 𝑍 ) |
| 40 |
24 30 39
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) = 𝑍 ) |
| 41 |
11 32
|
prssd |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → { 𝑌 , 𝑍 } ⊆ 𝐷 ) |
| 42 |
41
|
3ad2ant2 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑌 , 𝑍 } ⊆ 𝐷 ) |
| 43 |
|
enpr2 |
⊢ ( ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑌 ≠ 𝑍 ) → { 𝑌 , 𝑍 } ≈ 2o ) |
| 44 |
12 33 35 43
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → { 𝑌 , 𝑍 } ≈ 2o ) |
| 45 |
1
|
pmtrf |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝑌 , 𝑍 } ⊆ 𝐷 ∧ { 𝑌 , 𝑍 } ≈ 2o ) → ( 𝑇 ‘ { 𝑌 , 𝑍 } ) : 𝐷 ⟶ 𝐷 ) |
| 46 |
3
|
feq1i |
⊢ ( 𝐺 : 𝐷 ⟶ 𝐷 ↔ ( 𝑇 ‘ { 𝑌 , 𝑍 } ) : 𝐷 ⟶ 𝐷 ) |
| 47 |
45 46
|
sylibr |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ { 𝑌 , 𝑍 } ⊆ 𝐷 ∧ { 𝑌 , 𝑍 } ≈ 2o ) → 𝐺 : 𝐷 ⟶ 𝐷 ) |
| 48 |
8 42 44 47
|
syl3anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐺 : 𝐷 ⟶ 𝐷 ) |
| 49 |
48
|
ffnd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → 𝐺 Fn 𝐷 ) |
| 50 |
|
fvco2 |
⊢ ( ( 𝐺 Fn 𝐷 ∧ 𝑋 ∈ 𝐷 ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 51 |
49 10 50
|
syl2anc |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) ) |
| 52 |
3
|
fveq1i |
⊢ ( 𝐺 ‘ 𝑋 ) = ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑋 ) |
| 53 |
|
id |
⊢ ( 𝐷 ∈ 𝑉 → 𝐷 ∈ 𝑉 ) |
| 54 |
|
3anrot |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ) |
| 55 |
54
|
biimpi |
⊢ ( ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) → ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ) |
| 56 |
|
3anrot |
⊢ ( ( 𝑌 ≠ 𝑍 ∧ 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ↔ ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ∧ 𝑌 ≠ 𝑍 ) ) |
| 57 |
|
necom |
⊢ ( 𝑌 ≠ 𝑋 ↔ 𝑋 ≠ 𝑌 ) |
| 58 |
|
necom |
⊢ ( 𝑍 ≠ 𝑋 ↔ 𝑋 ≠ 𝑍 ) |
| 59 |
|
biid |
⊢ ( 𝑌 ≠ 𝑍 ↔ 𝑌 ≠ 𝑍 ) |
| 60 |
57 58 59
|
3anbi123i |
⊢ ( ( 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ∧ 𝑌 ≠ 𝑍 ) ↔ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) |
| 61 |
56 60
|
sylbbr |
⊢ ( ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) → ( 𝑌 ≠ 𝑍 ∧ 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ) |
| 62 |
1
|
pmtrprfv3 |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ∧ 𝑋 ∈ 𝐷 ) ∧ ( 𝑌 ≠ 𝑍 ∧ 𝑌 ≠ 𝑋 ∧ 𝑍 ≠ 𝑋 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑋 ) = 𝑋 ) |
| 63 |
53 55 61 62
|
syl3an |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝑇 ‘ { 𝑌 , 𝑍 } ) ‘ 𝑋 ) = 𝑋 ) |
| 64 |
52 63
|
eqtrid |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐺 ‘ 𝑋 ) = 𝑋 ) |
| 65 |
64
|
fveq2d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( 𝐹 ‘ ( 𝐺 ‘ 𝑋 ) ) = ( 𝐹 ‘ 𝑋 ) ) |
| 66 |
51 65 29
|
3eqtrd |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) = 𝑌 ) |
| 67 |
7 40 66
|
3netr4d |
⊢ ( ( 𝐷 ∈ 𝑉 ∧ ( 𝑋 ∈ 𝐷 ∧ 𝑌 ∈ 𝐷 ∧ 𝑍 ∈ 𝐷 ) ∧ ( 𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍 ∧ 𝑌 ≠ 𝑍 ) ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝑋 ) ≠ ( ( 𝐹 ∘ 𝐺 ) ‘ 𝑋 ) ) |