| Step |
Hyp |
Ref |
Expression |
| 1 |
|
prdsplusgcl.y |
⊢ 𝑌 = ( 𝑆 Xs 𝑅 ) |
| 2 |
|
prdsplusgcl.b |
⊢ 𝐵 = ( Base ‘ 𝑌 ) |
| 3 |
|
prdsplusgcl.p |
⊢ + = ( +g ‘ 𝑌 ) |
| 4 |
|
prdsplusgcl.s |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 5 |
|
prdsplusgcl.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
prdsplusgcl.r |
⊢ ( 𝜑 → 𝑅 : 𝐼 ⟶ Mnd ) |
| 7 |
|
prdsidlem.z |
⊢ 0 = ( 0g ∘ 𝑅 ) |
| 8 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ V ) |
| 9 |
6
|
feqmptd |
⊢ ( 𝜑 → 𝑅 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑅 ‘ 𝑦 ) ) ) |
| 10 |
|
fn0g |
⊢ 0g Fn V |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → 0g Fn V ) |
| 12 |
|
dffn5 |
⊢ ( 0g Fn V ↔ 0g = ( 𝑥 ∈ V ↦ ( 0g ‘ 𝑥 ) ) ) |
| 13 |
11 12
|
sylib |
⊢ ( 𝜑 → 0g = ( 𝑥 ∈ V ↦ ( 0g ‘ 𝑥 ) ) ) |
| 14 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑅 ‘ 𝑦 ) → ( 0g ‘ 𝑥 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 15 |
8 9 13 14
|
fmptco |
⊢ ( 𝜑 → ( 0g ∘ 𝑅 ) = ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 16 |
7 15
|
eqtrid |
⊢ ( 𝜑 → 0 = ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 17 |
6
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 18 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) = ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 19 |
|
eqid |
⊢ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 20 |
18 19
|
mndidcl |
⊢ ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd → ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 21 |
17 20
|
syl |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 22 |
21
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 23 |
6
|
ffnd |
⊢ ( 𝜑 → 𝑅 Fn 𝐼 ) |
| 24 |
1 2 4 5 23
|
prdsbasmpt |
⊢ ( 𝜑 → ( ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∈ 𝐵 ↔ ∀ 𝑦 ∈ 𝐼 ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 25 |
22 24
|
mpbird |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝐼 ↦ ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ∈ 𝐵 ) |
| 26 |
16 25
|
eqeltrd |
⊢ ( 𝜑 → 0 ∈ 𝐵 ) |
| 27 |
7
|
fveq1i |
⊢ ( 0 ‘ 𝑦 ) = ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) |
| 28 |
|
fvco2 |
⊢ ( ( 𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 29 |
23 28
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ∘ 𝑅 ) ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 30 |
27 29
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 0 ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 31 |
30
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 0 ‘ 𝑦 ) = ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 32 |
31
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) |
| 33 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 : 𝐼 ⟶ Mnd ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑅 ‘ 𝑦 ) ∈ Mnd ) |
| 35 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑆 ∈ 𝑉 ) |
| 36 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
| 37 |
23
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑅 Fn 𝐼 ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑥 ∈ 𝐵 ) |
| 39 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → 𝑦 ∈ 𝐼 ) |
| 40 |
1 2 35 36 37 38 39
|
prdsbasprj |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) |
| 41 |
|
eqid |
⊢ ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) = ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) |
| 42 |
18 41 19
|
mndlid |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd ∧ ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 43 |
34 40 42
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 44 |
32 43
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 45 |
44
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 46 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ 𝑉 ) |
| 47 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 48 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑅 Fn 𝐼 ) |
| 49 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 0 ∈ 𝐵 ) |
| 50 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 51 |
1 2 46 47 48 49 50 3
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 0 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 𝑥 ‘ 𝑦 ) ) ) ) |
| 52 |
1 2 46 47 48 50
|
prdsbasfn |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 Fn 𝐼 ) |
| 53 |
|
dffn5 |
⊢ ( 𝑥 Fn 𝐼 ↔ 𝑥 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 54 |
52 53
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 55 |
45 51 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 0 + 𝑥 ) = 𝑥 ) |
| 56 |
31
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) = ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) ) |
| 57 |
18 41 19
|
mndrid |
⊢ ( ( ( 𝑅 ‘ 𝑦 ) ∈ Mnd ∧ ( 𝑥 ‘ 𝑦 ) ∈ ( Base ‘ ( 𝑅 ‘ 𝑦 ) ) ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 58 |
34 40 57
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0g ‘ ( 𝑅 ‘ 𝑦 ) ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 59 |
56 58
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) = ( 𝑥 ‘ 𝑦 ) ) |
| 60 |
59
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑦 ) ) ) |
| 61 |
1 2 46 47 48 50 49 3
|
prdsplusgval |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = ( 𝑦 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑦 ) ( +g ‘ ( 𝑅 ‘ 𝑦 ) ) ( 0 ‘ 𝑦 ) ) ) ) |
| 62 |
60 61 54
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 63 |
55 62
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 64 |
63
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) |
| 65 |
26 64
|
jca |
⊢ ( 𝜑 → ( 0 ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ( ( 0 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 0 ) = 𝑥 ) ) ) |