Metamath Proof Explorer


Theorem prprelprb

Description: A set is an element of the set of all proper unordered pairs over a given set X iff it is a pair of different elements of the set X . (Contributed by AV, 7-May-2023)

Ref Expression
Assertion prprelprb ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) )

Proof

Step Hyp Ref Expression
1 prprvalpw ( 𝑋 ∈ V → ( Pairsproper𝑋 ) = { 𝑝 ∈ 𝒫 𝑋 ∣ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } )
2 1 eleq2d ( 𝑋 ∈ V → ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑋 ∣ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } ) )
3 eqeq1 ( 𝑝 = 𝑃 → ( 𝑝 = { 𝑎 , 𝑏 } ↔ 𝑃 = { 𝑎 , 𝑏 } ) )
4 3 anbi2d ( 𝑝 = 𝑃 → ( ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) ↔ ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
5 4 2rexbidv ( 𝑝 = 𝑃 → ( ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) ↔ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
6 5 elrab ( 𝑃 ∈ { 𝑝 ∈ 𝒫 𝑋 ∣ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑝 = { 𝑎 , 𝑏 } ) } ↔ ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
7 2 6 bitrdi ( 𝑋 ∈ V → ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ) )
8 pm3.22 ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) → ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) )
9 8 a1i ( ( 𝑃 ∈ 𝒫 𝑋 ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) → ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) )
10 9 reximdvva ( 𝑃 ∈ 𝒫 𝑋 → ( ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) → ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) )
11 10 imp ( ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) → ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) )
12 11 anim2i ( ( 𝑋 ∈ V ∧ ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ) → ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) )
13 12 ex ( 𝑋 ∈ V → ( ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) → ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
14 simpr ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) )
15 14 ancomd ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) )
16 prelpwi ( ( 𝑎𝑋𝑏𝑋 ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 )
17 16 adantl ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 )
18 17 adantr ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 )
19 eleq1 ( 𝑃 = { 𝑎 , 𝑏 } → ( 𝑃 ∈ 𝒫 𝑋 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 ) )
20 19 adantr ( ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) → ( 𝑃 ∈ 𝒫 𝑋 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 ) )
21 20 adantl ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ( 𝑃 ∈ 𝒫 𝑋 ↔ { 𝑎 , 𝑏 } ∈ 𝒫 𝑋 ) )
22 18 21 mpbird ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → 𝑃 ∈ 𝒫 𝑋 )
23 15 22 jca ( ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) ∧ ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) )
24 23 ex ( ( 𝑋 ∈ V ∧ ( 𝑎𝑋𝑏𝑋 ) ) → ( ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) → ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) ) )
25 24 reximdvva ( 𝑋 ∈ V → ( ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) → ∃ 𝑎𝑋𝑏𝑋 ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) ) )
26 25 imp ( ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ∃ 𝑎𝑋𝑏𝑋 ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) )
27 r19.41vv ( ∃ 𝑎𝑋𝑏𝑋 ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) ↔ ( ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) )
28 27 biancomi ( ∃ 𝑎𝑋𝑏𝑋 ( ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ∧ 𝑃 ∈ 𝒫 𝑋 ) ↔ ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
29 26 28 sylib ( ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) )
30 13 29 impbid1 ( 𝑋 ∈ V → ( ( 𝑃 ∈ 𝒫 𝑋 ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑎𝑏𝑃 = { 𝑎 , 𝑏 } ) ) ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
31 7 30 bitrd ( 𝑋 ∈ V → ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
32 fvprc ( ¬ 𝑋 ∈ V → ( Pairsproper𝑋 ) = ∅ )
33 32 eleq2d ( ¬ 𝑋 ∈ V → ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ 𝑃 ∈ ∅ ) )
34 noel ¬ 𝑃 ∈ ∅
35 pm2.21 ( ¬ 𝑃 ∈ ∅ → ( 𝑃 ∈ ∅ → ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
36 34 35 mp1i ( ¬ 𝑋 ∈ V → ( 𝑃 ∈ ∅ → ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
37 pm2.21 ( ¬ 𝑋 ∈ V → ( 𝑋 ∈ V → ( ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) → 𝑃 ∈ ∅ ) ) )
38 37 impd ( ¬ 𝑋 ∈ V → ( ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) → 𝑃 ∈ ∅ ) )
39 36 38 impbid ( ¬ 𝑋 ∈ V → ( 𝑃 ∈ ∅ ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
40 33 39 bitrd ( ¬ 𝑋 ∈ V → ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) ) )
41 31 40 pm2.61i ( 𝑃 ∈ ( Pairsproper𝑋 ) ↔ ( 𝑋 ∈ V ∧ ∃ 𝑎𝑋𝑏𝑋 ( 𝑃 = { 𝑎 , 𝑏 } ∧ 𝑎𝑏 ) ) )