| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pthd.p | ⊢ ( 𝜑  →  𝑃  ∈  Word  V ) | 
						
							| 2 |  | pthd.r | ⊢ 𝑅  =  ( ( ♯ ‘ 𝑃 )  −  1 ) | 
						
							| 3 |  | pthd.s | ⊢ ( 𝜑  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝑃 ) ) ∀ 𝑗  ∈  ( 1 ..^ 𝑅 ) ( 𝑖  ≠  𝑗  →  ( 𝑃 ‘ 𝑖 )  ≠  ( 𝑃 ‘ 𝑗 ) ) ) | 
						
							| 4 |  | lencl | ⊢ ( 𝑃  ∈  Word  V  →  ( ♯ ‘ 𝑃 )  ∈  ℕ0 ) | 
						
							| 5 |  | df-ne | ⊢ ( ( ♯ ‘ 𝑃 )  ≠  0  ↔  ¬  ( ♯ ‘ 𝑃 )  =  0 ) | 
						
							| 6 |  | elnnne0 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  ↔  ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑃 )  ≠  0 ) ) | 
						
							| 7 | 6 | simplbi2 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ( ♯ ‘ 𝑃 )  ≠  0  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) ) | 
						
							| 8 | 5 7 | biimtrrid | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ0  →  ( ¬  ( ♯ ‘ 𝑃 )  =  0  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) ) | 
						
							| 9 | 1 4 8 | 3syl | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝑃 )  =  0  →  ( ♯ ‘ 𝑃 )  ∈  ℕ ) ) | 
						
							| 10 |  | eqid | ⊢ 0  =  0 | 
						
							| 11 | 10 | orci | ⊢ ( 0  =  0  ∨  0  =  𝑅 ) | 
						
							| 12 | 1 2 3 | pthdlem2lem | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  ( 0  =  0  ∨  0  =  𝑅 ) )  →  ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) | 
						
							| 13 | 11 12 | mp3an3 | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) | 
						
							| 14 |  | eqid | ⊢ 𝑅  =  𝑅 | 
						
							| 15 | 14 | olci | ⊢ ( 𝑅  =  0  ∨  𝑅  =  𝑅 ) | 
						
							| 16 | 1 2 3 | pthdlem2lem | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ  ∧  ( 𝑅  =  0  ∨  𝑅  =  𝑅 ) )  →  ( 𝑃 ‘ 𝑅 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) | 
						
							| 17 | 15 16 | mp3an3 | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  ( 𝑃 ‘ 𝑅 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) | 
						
							| 18 |  | wrdffz | ⊢ ( 𝑃  ∈  Word  V  →  𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ V ) | 
						
							| 19 | 1 18 | syl | ⊢ ( 𝜑  →  𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ V ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ V ) | 
						
							| 21 | 2 | oveq2i | ⊢ ( 0 ... 𝑅 )  =  ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) | 
						
							| 22 | 21 | feq2i | ⊢ ( 𝑃 : ( 0 ... 𝑅 ) ⟶ V  ↔  𝑃 : ( 0 ... ( ( ♯ ‘ 𝑃 )  −  1 ) ) ⟶ V ) | 
						
							| 23 | 20 22 | sylibr | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  𝑃 : ( 0 ... 𝑅 ) ⟶ V ) | 
						
							| 24 |  | nnm1nn0 | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑃 )  −  1 )  ∈  ℕ0 ) | 
						
							| 25 | 2 24 | eqeltrid | ⊢ ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  𝑅  ∈  ℕ0 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  𝑅  ∈  ℕ0 ) | 
						
							| 27 |  | fvinim0ffz | ⊢ ( ( 𝑃 : ( 0 ... 𝑅 ) ⟶ V  ∧  𝑅  ∈  ℕ0 )  →  ( ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅  ↔  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) )  ∧  ( 𝑃 ‘ 𝑅 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) ) ) | 
						
							| 28 | 23 26 27 | syl2anc | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  ( ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅  ↔  ( ( 𝑃 ‘ 0 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) )  ∧  ( 𝑃 ‘ 𝑅 )  ∉  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) ) ) ) | 
						
							| 29 | 13 17 28 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( ♯ ‘ 𝑃 )  ∈  ℕ )  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅ ) | 
						
							| 30 | 29 | ex | ⊢ ( 𝜑  →  ( ( ♯ ‘ 𝑃 )  ∈  ℕ  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅ ) ) | 
						
							| 31 | 9 30 | syld | ⊢ ( 𝜑  →  ( ¬  ( ♯ ‘ 𝑃 )  =  0  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅ ) ) | 
						
							| 32 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( ( ♯ ‘ 𝑃 )  −  1 )  =  ( 0  −  1 ) ) | 
						
							| 33 | 2 32 | eqtrid | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  𝑅  =  ( 0  −  1 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( 1 ..^ 𝑅 )  =  ( 1 ..^ ( 0  −  1 ) ) ) | 
						
							| 35 |  | 0le2 | ⊢ 0  ≤  2 | 
						
							| 36 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 37 | 35 36 | breqtrri | ⊢ 0  ≤  ( 1  +  1 ) | 
						
							| 38 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 39 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 40 | 38 39 39 | lesubadd2i | ⊢ ( ( 0  −  1 )  ≤  1  ↔  0  ≤  ( 1  +  1 ) ) | 
						
							| 41 | 37 40 | mpbir | ⊢ ( 0  −  1 )  ≤  1 | 
						
							| 42 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 43 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 44 |  | peano2zm | ⊢ ( 0  ∈  ℤ  →  ( 0  −  1 )  ∈  ℤ ) | 
						
							| 45 | 43 44 | ax-mp | ⊢ ( 0  −  1 )  ∈  ℤ | 
						
							| 46 |  | fzon | ⊢ ( ( 1  ∈  ℤ  ∧  ( 0  −  1 )  ∈  ℤ )  →  ( ( 0  −  1 )  ≤  1  ↔  ( 1 ..^ ( 0  −  1 ) )  =  ∅ ) ) | 
						
							| 47 | 42 45 46 | mp2an | ⊢ ( ( 0  −  1 )  ≤  1  ↔  ( 1 ..^ ( 0  −  1 ) )  =  ∅ ) | 
						
							| 48 | 41 47 | mpbi | ⊢ ( 1 ..^ ( 0  −  1 ) )  =  ∅ | 
						
							| 49 | 34 48 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( 1 ..^ 𝑅 )  =  ∅ ) | 
						
							| 50 | 49 | imaeq2d | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( 𝑃  “  ( 1 ..^ 𝑅 ) )  =  ( 𝑃  “  ∅ ) ) | 
						
							| 51 |  | ima0 | ⊢ ( 𝑃  “  ∅ )  =  ∅ | 
						
							| 52 | 50 51 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( 𝑃  “  ( 1 ..^ 𝑅 ) )  =  ∅ ) | 
						
							| 53 | 52 | ineq2d | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ∅ ) ) | 
						
							| 54 |  | in0 | ⊢ ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ∅ )  =  ∅ | 
						
							| 55 | 53 54 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑃 )  =  0  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅ ) | 
						
							| 56 | 31 55 | pm2.61d2 | ⊢ ( 𝜑  →  ( ( 𝑃  “  { 0 ,  𝑅 } )  ∩  ( 𝑃  “  ( 1 ..^ 𝑅 ) ) )  =  ∅ ) |