Step |
Hyp |
Ref |
Expression |
1 |
|
pwsco1rhm.y |
⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) |
2 |
|
pwsco1rhm.z |
⊢ 𝑍 = ( 𝑅 ↑s 𝐵 ) |
3 |
|
pwsco1rhm.c |
⊢ 𝐶 = ( Base ‘ 𝑍 ) |
4 |
|
pwsco1rhm.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
pwsco1rhm.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
6 |
|
pwsco1rhm.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
7 |
|
pwsco1rhm.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
8 |
2
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊 ) → 𝑍 ∈ Ring ) |
9 |
4 6 8
|
syl2anc |
⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
10 |
1
|
pwsring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
11 |
4 5 10
|
syl2anc |
⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
12 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
13 |
4 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
14 |
1 2 3 13 5 6 7
|
pwsco1mhm |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 MndHom 𝑌 ) ) |
15 |
|
ringgrp |
⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Grp ) |
16 |
9 15
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ Grp ) |
17 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
18 |
11 17
|
syl |
⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
19 |
|
ghmmhmb |
⊢ ( ( 𝑍 ∈ Grp ∧ 𝑌 ∈ Grp ) → ( 𝑍 GrpHom 𝑌 ) = ( 𝑍 MndHom 𝑌 ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝑍 GrpHom 𝑌 ) = ( 𝑍 MndHom 𝑌 ) ) |
21 |
14 20
|
eleqtrrd |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ) |
22 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) |
23 |
|
eqid |
⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) |
24 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) |
25 |
|
eqid |
⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) |
26 |
25
|
ringmgp |
⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
28 |
22 23 24 27 5 6 7
|
pwsco1mhm |
⊢ ( 𝜑 → ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
30 |
2 29
|
pwsbas |
⊢ ( ( 𝑅 ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ 𝑍 ) ) |
31 |
13 6 30
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ 𝑍 ) ) |
32 |
31 3
|
eqtr4di |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = 𝐶 ) |
33 |
25 29
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
34 |
23 33
|
pwsbas |
⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
35 |
27 6 34
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐵 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
36 |
32 35
|
eqtr3d |
⊢ ( 𝜑 → 𝐶 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
37 |
36
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) = ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ↦ ( 𝑔 ∘ 𝐹 ) ) ) |
38 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) |
39 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) |
40 |
|
eqid |
⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) |
41 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) |
42 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) |
43 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) |
44 |
2 25 23 40 41 24 42 43
|
pwsmgp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑊 ) → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
45 |
4 6 44
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) ) |
46 |
45
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
47 |
|
eqid |
⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) |
48 |
|
eqid |
⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) |
49 |
|
eqid |
⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) |
50 |
|
eqid |
⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) |
51 |
|
eqid |
⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) |
52 |
1 25 22 47 48 49 50 51
|
pwsmgp |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
53 |
4 5 52
|
syl2anc |
⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
54 |
53
|
simpld |
⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
55 |
45
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) ) |
56 |
55
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) ) 𝑦 ) ) |
57 |
53
|
simprd |
⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
58 |
57
|
oveqdr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) 𝑦 ) ) |
59 |
38 39 46 54 56 58
|
mhmpropd |
⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐵 ) MndHom ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
60 |
28 37 59
|
3eltr4d |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) |
61 |
21 60
|
jca |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ∧ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) |
62 |
40 47
|
isrhm |
⊢ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 RingHom 𝑌 ) ↔ ( ( 𝑍 ∈ Ring ∧ 𝑌 ∈ Ring ) ∧ ( ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 GrpHom 𝑌 ) ∧ ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( ( mulGrp ‘ 𝑍 ) MndHom ( mulGrp ‘ 𝑌 ) ) ) ) ) |
63 |
9 11 61 62
|
syl21anbrc |
⊢ ( 𝜑 → ( 𝑔 ∈ 𝐶 ↦ ( 𝑔 ∘ 𝐹 ) ) ∈ ( 𝑍 RingHom 𝑌 ) ) |