| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwsco1mhm.y | ⊢ 𝑌  =  ( 𝑅  ↑s  𝐴 ) | 
						
							| 2 |  | pwsco1mhm.z | ⊢ 𝑍  =  ( 𝑅  ↑s  𝐵 ) | 
						
							| 3 |  | pwsco1mhm.c | ⊢ 𝐶  =  ( Base ‘ 𝑍 ) | 
						
							| 4 |  | pwsco1mhm.r | ⊢ ( 𝜑  →  𝑅  ∈  Mnd ) | 
						
							| 5 |  | pwsco1mhm.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | pwsco1mhm.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑊 ) | 
						
							| 7 |  | pwsco1mhm.f | ⊢ ( 𝜑  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 8 | 2 | pwsmnd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐵  ∈  𝑊 )  →  𝑍  ∈  Mnd ) | 
						
							| 9 | 4 6 8 | syl2anc | ⊢ ( 𝜑  →  𝑍  ∈  Mnd ) | 
						
							| 10 | 1 | pwsmnd | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  𝑌  ∈  Mnd ) | 
						
							| 11 | 4 5 10 | syl2anc | ⊢ ( 𝜑  →  𝑌  ∈  Mnd ) | 
						
							| 12 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 13 | 2 12 3 | pwselbasb | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐵  ∈  𝑊 )  →  ( 𝑔  ∈  𝐶  ↔  𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 14 | 4 6 13 | syl2anc | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↔  𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 15 | 14 | biimpa | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐶 )  →  𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 16 | 7 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐶 )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 17 |  | fco | ⊢ ( ( 𝑔 : 𝐵 ⟶ ( Base ‘ 𝑅 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑔  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐶 )  →  ( 𝑔  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 ) | 
						
							| 20 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑔  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑔  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 21 | 4 5 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑔  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑔  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐶 )  →  ( ( 𝑔  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑔  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 23 | 18 22 | mpbird | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐶 )  →  ( 𝑔  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 24 | 23 | fmpttd | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 ) ) | 
						
							| 25 | 5 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 26 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 27 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) )  ∈  V ) | 
						
							| 28 | 7 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐹 : 𝐴 ⟶ 𝐵 ) | 
						
							| 29 | 28 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  ∧  𝑧  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑧 )  ∈  𝐵 ) | 
						
							| 30 | 28 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐹  =  ( 𝑧  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 31 | 4 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑅  ∈  Mnd ) | 
						
							| 32 | 6 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐵  ∈  𝑊 ) | 
						
							| 33 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑥  ∈  𝐶 ) | 
						
							| 34 | 2 12 3 31 32 33 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 35 | 34 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑥  =  ( 𝑤  ∈  𝐵  ↦  ( 𝑥 ‘ 𝑤 ) ) ) | 
						
							| 36 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑥 ‘ 𝑤 )  =  ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 37 | 29 30 35 36 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∘  𝐹 )  =  ( 𝑧  ∈  𝐴  ↦  ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 38 |  | simprr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑦  ∈  𝐶 ) | 
						
							| 39 | 2 12 3 31 32 38 | pwselbas | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 40 | 39 | feqmptd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝑦  =  ( 𝑤  ∈  𝐵  ↦  ( 𝑦 ‘ 𝑤 ) ) ) | 
						
							| 41 |  | fveq2 | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  ( 𝑦 ‘ 𝑤 )  =  ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) | 
						
							| 42 | 29 30 40 41 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑦  ∘  𝐹 )  =  ( 𝑧  ∈  𝐴  ↦  ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 43 | 25 26 27 37 42 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥  ∘  𝐹 )  ∘f  ( +g ‘ 𝑅 ) ( 𝑦  ∘  𝐹 ) )  =  ( 𝑧  ∈  𝐴  ↦  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 44 |  | fco | ⊢ ( ( 𝑥 : 𝐵 ⟶ ( Base ‘ 𝑅 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑥  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 45 | 34 28 44 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 46 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑥  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑥  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 47 | 31 25 46 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑥  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 48 | 45 47 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 49 |  | fco | ⊢ ( ( 𝑦 : 𝐵 ⟶ ( Base ‘ 𝑅 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( 𝑦  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 39 28 49 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑦  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 1 12 19 | pwselbasb | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑦  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑦  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 52 | 31 25 51 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑦  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 )  ↔  ( 𝑦  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) ) | 
						
							| 53 | 50 52 | mpbird | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑦  ∘  𝐹 )  ∈  ( Base ‘ 𝑌 ) ) | 
						
							| 54 |  | eqid | ⊢ ( +g ‘ 𝑅 )  =  ( +g ‘ 𝑅 ) | 
						
							| 55 |  | eqid | ⊢ ( +g ‘ 𝑌 )  =  ( +g ‘ 𝑌 ) | 
						
							| 56 | 1 19 31 25 48 53 54 55 | pwsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥  ∘  𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦  ∘  𝐹 ) )  =  ( ( 𝑥  ∘  𝐹 )  ∘f  ( +g ‘ 𝑅 ) ( 𝑦  ∘  𝐹 ) ) ) | 
						
							| 57 |  | eqid | ⊢ ( +g ‘ 𝑍 )  =  ( +g ‘ 𝑍 ) | 
						
							| 58 | 2 3 31 32 33 38 54 57 | pwsplusgval | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  =  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 ) ) | 
						
							| 59 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  ∧  𝑤  ∈  𝐵 )  →  ( 𝑥 ‘ 𝑤 )  ∈  V ) | 
						
							| 60 |  | fvexd | ⊢ ( ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  ∧  𝑤  ∈  𝐵 )  →  ( 𝑦 ‘ 𝑤 )  ∈  V ) | 
						
							| 61 | 32 59 60 35 40 | offval2 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∘f  ( +g ‘ 𝑅 ) 𝑦 )  =  ( 𝑤  ∈  𝐵  ↦  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 62 | 58 61 | eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  =  ( 𝑤  ∈  𝐵  ↦  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) ) ) ) | 
						
							| 63 | 36 41 | oveq12d | ⊢ ( 𝑤  =  ( 𝐹 ‘ 𝑧 )  →  ( ( 𝑥 ‘ 𝑤 ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ 𝑤 ) )  =  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) | 
						
							| 64 | 29 30 62 63 | fmptco | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 )  =  ( 𝑧  ∈  𝐴  ↦  ( ( 𝑥 ‘ ( 𝐹 ‘ 𝑧 ) ) ( +g ‘ 𝑅 ) ( 𝑦 ‘ ( 𝐹 ‘ 𝑧 ) ) ) ) ) | 
						
							| 65 | 43 56 64 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 )  =  ( ( 𝑥  ∘  𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦  ∘  𝐹 ) ) ) | 
						
							| 66 |  | eqid | ⊢ ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  =  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) | 
						
							| 67 |  | coeq1 | ⊢ ( 𝑔  =  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  →  ( 𝑔  ∘  𝐹 )  =  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 ) ) | 
						
							| 68 | 3 57 | mndcl | ⊢ ( ( 𝑍  ∈  Mnd  ∧  𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 )  →  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∈  𝐶 ) | 
						
							| 69 | 68 | 3expb | ⊢ ( ( 𝑍  ∈  Mnd  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∈  𝐶 ) | 
						
							| 70 | 9 69 | sylan | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∈  𝐶 ) | 
						
							| 71 |  | ovex | ⊢ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∈  V | 
						
							| 72 | 7 5 | fexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  𝐹  ∈  V ) | 
						
							| 74 |  | coexg | ⊢ ( ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∈  V  ∧  𝐹  ∈  V )  →  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 )  ∈  V ) | 
						
							| 75 | 71 73 74 | sylancr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 )  ∈  V ) | 
						
							| 76 | 66 67 70 75 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) )  =  ( ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 )  ∘  𝐹 ) ) | 
						
							| 77 |  | coeq1 | ⊢ ( 𝑔  =  𝑥  →  ( 𝑔  ∘  𝐹 )  =  ( 𝑥  ∘  𝐹 ) ) | 
						
							| 78 |  | coexg | ⊢ ( ( 𝑥  ∈  𝐶  ∧  𝐹  ∈  V )  →  ( 𝑥  ∘  𝐹 )  ∈  V ) | 
						
							| 79 | 33 73 78 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑥  ∘  𝐹 )  ∈  V ) | 
						
							| 80 | 66 77 33 79 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 )  =  ( 𝑥  ∘  𝐹 ) ) | 
						
							| 81 |  | coeq1 | ⊢ ( 𝑔  =  𝑦  →  ( 𝑔  ∘  𝐹 )  =  ( 𝑦  ∘  𝐹 ) ) | 
						
							| 82 |  | coexg | ⊢ ( ( 𝑦  ∈  𝐶  ∧  𝐹  ∈  V )  →  ( 𝑦  ∘  𝐹 )  ∈  V ) | 
						
							| 83 | 38 73 82 | syl2anc | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( 𝑦  ∘  𝐹 )  ∈  V ) | 
						
							| 84 | 66 81 38 83 | fvmptd3 | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 )  =  ( 𝑦  ∘  𝐹 ) ) | 
						
							| 85 | 80 84 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 ) )  =  ( ( 𝑥  ∘  𝐹 ) ( +g ‘ 𝑌 ) ( 𝑦  ∘  𝐹 ) ) ) | 
						
							| 86 | 65 76 85 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐶  ∧  𝑦  ∈  𝐶 ) )  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 ) ) ) | 
						
							| 87 | 86 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 ) ) ) | 
						
							| 88 |  | coeq1 | ⊢ ( 𝑔  =  ( 0g ‘ 𝑍 )  →  ( 𝑔  ∘  𝐹 )  =  ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) ) | 
						
							| 89 |  | eqid | ⊢ ( 0g ‘ 𝑍 )  =  ( 0g ‘ 𝑍 ) | 
						
							| 90 | 3 89 | mndidcl | ⊢ ( 𝑍  ∈  Mnd  →  ( 0g ‘ 𝑍 )  ∈  𝐶 ) | 
						
							| 91 | 9 90 | syl | ⊢ ( 𝜑  →  ( 0g ‘ 𝑍 )  ∈  𝐶 ) | 
						
							| 92 |  | coexg | ⊢ ( ( ( 0g ‘ 𝑍 )  ∈  𝐶  ∧  𝐹  ∈  V )  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 )  ∈  V ) | 
						
							| 93 | 91 72 92 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 )  ∈  V ) | 
						
							| 94 | 66 88 91 93 | fvmptd3 | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) )  =  ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) ) | 
						
							| 95 | 2 12 3 4 6 91 | pwselbas | ⊢ ( 𝜑  →  ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 96 |  | fco | ⊢ ( ( ( 0g ‘ 𝑍 ) : 𝐵 ⟶ ( Base ‘ 𝑅 )  ∧  𝐹 : 𝐴 ⟶ 𝐵 )  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 97 | 95 7 96 | syl2anc | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) : 𝐴 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 98 | 97 | ffnd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 )  Fn  𝐴 ) | 
						
							| 99 |  | fvexd | ⊢ ( 𝜑  →  ( 0g ‘ 𝑅 )  ∈  V ) | 
						
							| 100 |  | fnconstg | ⊢ ( ( 0g ‘ 𝑅 )  ∈  V  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  Fn  𝐴 ) | 
						
							| 101 | 99 100 | syl | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  Fn  𝐴 ) | 
						
							| 102 |  | eqid | ⊢ ( 0g ‘ 𝑅 )  =  ( 0g ‘ 𝑅 ) | 
						
							| 103 | 2 102 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐵  ∈  𝑊 )  →  ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 104 | 4 6 103 | syl2anc | ⊢ ( 𝜑  →  ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑍 ) ) | 
						
							| 105 | 104 | fveq1d | ⊢ ( 𝜑  →  ( ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 106 | 105 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 107 |  | fvex | ⊢ ( 0g ‘ 𝑅 )  ∈  V | 
						
							| 108 | 7 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 ) | 
						
							| 109 |  | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 )  ∈  V  ∧  ( 𝐹 ‘ 𝑥 )  ∈  𝐵 )  →  ( ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 110 | 107 108 109 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐵  ×  { ( 0g ‘ 𝑅 ) } ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 111 | 106 110 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 112 |  | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 113 | 7 112 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 0g ‘ 𝑍 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 114 |  | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 )  ∈  V  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 115 | 99 114 | sylan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 116 | 111 113 115 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐴 )  →  ( ( ( 0g ‘ 𝑍 )  ∘  𝐹 ) ‘ 𝑥 )  =  ( ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) ‘ 𝑥 ) ) | 
						
							| 117 | 98 101 116 | eqfnfvd | ⊢ ( 𝜑  →  ( ( 0g ‘ 𝑍 )  ∘  𝐹 )  =  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } ) ) | 
						
							| 118 | 1 102 | pws0g | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 119 | 4 5 118 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  ×  { ( 0g ‘ 𝑅 ) } )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 120 | 94 117 119 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑌 ) ) | 
						
							| 121 | 24 87 120 | 3jca | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 )  ∧  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 ) )  ∧  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑌 ) ) ) | 
						
							| 122 |  | eqid | ⊢ ( 0g ‘ 𝑌 )  =  ( 0g ‘ 𝑌 ) | 
						
							| 123 | 3 19 57 55 89 122 | ismhm | ⊢ ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  MndHom  𝑌 )  ↔  ( ( 𝑍  ∈  Mnd  ∧  𝑌  ∈  Mnd )  ∧  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) : 𝐶 ⟶ ( Base ‘ 𝑌 )  ∧  ∀ 𝑥  ∈  𝐶 ∀ 𝑦  ∈  𝐶 ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 𝑥 ( +g ‘ 𝑍 ) 𝑦 ) )  =  ( ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑥 ) ( +g ‘ 𝑌 ) ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ 𝑦 ) )  ∧  ( ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) ) ‘ ( 0g ‘ 𝑍 ) )  =  ( 0g ‘ 𝑌 ) ) ) ) | 
						
							| 124 | 9 11 121 123 | syl21anbrc | ⊢ ( 𝜑  →  ( 𝑔  ∈  𝐶  ↦  ( 𝑔  ∘  𝐹 ) )  ∈  ( 𝑍  MndHom  𝑌 ) ) |